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MODERATED MEDIATION IN 
MULTILEVEL STRUCTURAL 

EQUATION MODELS: DECOMPOSING 
EFFECTS OF RACE ON MATH 

ACHIEVEMENT WITHIN VERSUS 
BETWEEN HIGH SCHOOLS 

IN THE UNITED STATES
Michael J. Zyphur, Zhen Zhang, Kristopher J. Preacher, and Laura J. Bird

At roughly similar times in the 1980s, social 
scientists formalized what have become enduring 
interests in multilevel modeling (e.g., Raudenbush  
& Bryk, 1986) and moderation and mediation  
(e.g., Baron & Kenny, 1986). Today, moderation and 
mediation models have been synthesized so that 
these effects can be combined and estimated in a 
wide variety of cases (Edwards & Lambert, 2007; 
Preacher, Rucker, & Hayes, 2007), including with 
latent variables and latent interactions (Cheung & 
Lau, 2015; Sardeshmukh & Vandenberg, 2016). 
In the multilevel arena, approaches now exist that 
allow assessing multilevel mediation (e.g., Preacher, 
Zyphur, & Zhang, 2010; Preacher, Zhang, & Zyphur, 
2011) and multilevel moderation with latent 
variables (e.g., Preacher, Zhang, & Zyphur, 2016).

What remains to be offered, however, is a 
synthesis of these interests in a way that allows 
estimating moderation and mediation at multiple 
levels of analysis. Our chapter addresses this by 
first describing the logic of moderated mediation, 
including how to formalize it as a structural equation 
model (SEM). We then extend this logic to multilevel 
SEM (MSEM) to estimate level-specific moderated 
mediation. Our approach allows the typical random 

coefficient prediction method for estimating 
cross-level moderation with random slopes (as 
outcomes), but our approach can also use a latent 
moderated structural equations (LMS) approach to 
estimate moderation, which requires latent variable 
interactions (see Preacher et al., 2016).

To avoid the high-dimensional numerical 
integration that often accompanies these interactions, 
we describe a Bayesian plausible values approach 
that multiply-imputes latent variable scores in the 
first step, then allowing researchers to form product 
terms as if they were observed to estimate moderated 
effects in a second step. This approach can be used 
for any model wherein latent interactions or power 
polynomials otherwise require numerical integration, 
and therefore, it is also applicable in single-level 
models (e.g., Sardeshmukh & Vandenberg, 2016). In 
the context of MSEM, our plausible values approach 
has the benefit of comparatively fast estimation while 
still allowing higher level product terms to be treated 
as if they were measured with error (e.g., unlike Leite 
& Zuo, 2011).

We offer a worked example using the well-
known High School and Beyond (HS&B) data set 
(e.g., Raudenbush & Bryk, 1986, 2002), with  
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7,185 students nested in 160 schools. The HS&B 
data and Mplus program code for all models that we 
estimate can be downloaded from quantpsy.org. With 
these additional materials, the reader can estimate 
the models that we specify and modify them to 
experiment with multilevel moderated mediation.

To help the reader keep track of the parameters in 
our models, we use familiar mediation notation (as in 
Baron & Kenny, 1986), with regression coefficients as 
follows: a is the first path in a mediation relationship, 
b is the second path in a mediation relationship, c is 
the total effect of a predictor on an ultimate outcome 
without controlling for a mediator, and c′ is the 
direct effect of a predictor on an ultimate outcome 
while controlling for a mediator. Furthermore, 
where appropriate, we use subscripts that indicate 
the outcome variable and the predictor variables 
associated with a regression coefficient. We illustrate 
this notation next but recommend that the unfamiliar 
reader first consult primary texts such as Baron 
and Kenny (1986), MacKinnon (2008), Preacher 
and Hayes (2004), Preacher et al. (2007), and 
Hayes (2013).

Our models estimate some effects of being Black 
in the United States. Given long-running racism and 
racial segregation in the United States (Bonilla-Silva, 
2006), and because race is social and relational 
(see Lucal, 1996; Smedley & Smedley, 2005; Tsui, 
Egan, & O’Reilly, 1992), we treat individuals’ 
self-identification as being Black or non-Black as 
indicating an important racial categorization in 
society—it matters. To be clear, as with feminist 
approaches to sex or gender (Haraway, 2006), our 
use of these terms and this categorization for our 
analyses is not meant to reify or otherwise reproduce 
racism. Instead, by showing negative effects of 
identifying as Black on math achievement both 
directly and indirectly via socioeconomic status 
(SES) within and between schools, our goal is to 
show racial inequalities so that they can be taken 
seriously and addressed.

In our Discussion section, we describe the 
benefits of our MSEM approach. They include 
an improved ability to conceptually reason and 
hypothesize about multilevel moderated mediation 
effects. Furthermore, the flexibility of MSEM allows 
random intercepts and random slopes that can be 

used as predictors, outcomes, indicators, mediators, 
or moderators at higher levels of analysis. With  
this expanded toolbox, researchers can better 
conduct research that addresses worldly problems 
of concern, such as racism.

MODERATED MEDIATION

To preface our discussion of multilevel moderated 
mediation, we first introduce basic concepts 
associated with moderation and mediation. We then 
treat moderated mediation in a single-level SEM 
framework and offer an empirical example using the 
HS&B data set.

Moderation
Moderation refers to an interaction or a conditional 
effect, wherein the effect of a predictor variable x 
on an outcome variable y varies across the levels 
of another predictor w (Cohen, Cohen, West, 
& Aiken, 2013). This kind of effect is usually 
modeled by forming a product term xw among 
the two predictor variables as follows (see a 
conceptual model of this effect in Figure 20.1a;  
see a more statistically accurate depiction in 
Figure 20.1b):

= ν + + + + εy c x c w c x wi y yx i yw i yxw i i y i, (20.1),

wherein i is a unit of observation (e.g., an individual 
student); v is an intercept; each c is a regression 
coefficient; and ε is a residual. The conditional 
nature of the effects can be shown by rearranging 
Equation 20.1, which we do to illustrate the example 
of x’s effect on y across varying levels of w:

( ) ( )= ν + + + + εy c w c c w xi y yw i yx yxw i i y i. (20.2),

Here, the first parenthetical term is a simple intercept, 
which equals the expected value of y when w takes 
on a specific value; whereas the second parenthetical 
term is a simple slope of x, which equals the expected 
value of y when w takes on a specific value (Preacher 
et al., 2007). To test for moderation, researchers 
typically examine the statistical significance of cyxw, 
which is sensible because only if cyxw ≠ 0 will the 
coefficient on x in Equation 20.2 detectably deviate 
from cx. Furthermore, the statistical significance of 
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a given simple slope can be computed for any given 
value of w, or it can be computed continuously 
across a range of observed w values. All this is 
typically done on the basis of the standard error (SE) 
of cyxw as computed under normal theory.

Mediation
By the term mediation we mean an indirect effect, 
such as the effect of x on y that is carried by a 
mediator m (Cohen et al., 2013). This kind of effect 
can be shown in equations for y and m as follows 
(see Figure 20.2):

(20.3),= ν + + εm a xi m mx i m i

(20.4),= ν + + ′ + εy b m c xi y ym i yx i y i

so that with substitution the indirect effect of x is 
shown to be a product term as follows:

( )= ν + ν + + ε + ′ + εy b a x c xi y ym m mx i m i yx i y i, (20.5), ,

which can be rearranged to show a traditional 
regression model structure as follows:

( ) ( )= ν + ν + + ′ + ε + εy b a b c x bi y ym m mx ym yx i ym m i y i,
(20.6)

, ,

wherein the first parenthetical term is an intercept; 
the second parenthetical term is the total effect of x, 
composed of an indirect effect amxbym and a direct 
effect c′yx; and the term bymεm,i is the direct effect of m 
that is independent of x. To test for mediation, 
researchers often modify traditional tests of statistical 
significance by estimating a confidence interval (CI) 
around amxbym—although the literature on mediation 
has historically distinguished between partial and 
full mediation (e.g., Baron & Kenny, 1986), we do 
not reproduce this distinction here and instead focus 
on indirect effects. Because estimates of such effects 
are not normally distributed, normal theory does not 
apply, and therefore, bootstrapping, Monte Carlo, or 
Bayes procedures are typically used (e.g., Preacher 
& Hayes, 2008; Preacher & Selig, 2012; Wang & 
Preacher, 2015; Yuan & MacKinnon, 2009).

Moderated Mediation
The term moderated mediation refers to the 
dependence of an indirect effect on at least one 
moderator variable w, such that indirect effects 
are made conditional on values of a moderator (or 
moderators). Many specifications produce moderated 
mediation (Hayes, 2013), but a general type can be 
shown by combining the logic of Equations 20.1, 20.3, 
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FIGURE 20.1.    (a) A conceptual diagram of a moderation model. (b) A path diagram 
of a moderation model, wherein covariances among predictors are accounted for when 
deriving coefficients rather than explicitly estimated.
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FIGURE 20.2.    Path diagram of a 
mediation model.
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and 20.4 as follows (see Figures 20.3a and 20.3b; see 
Model 59 in Hayes, 2018):

(20.7),= ν + + + + εm a x a w a x wi m mx i mw i mxw i i m i

= ν + + + ′ + ′

+ ′ + ε

y b m b m w c x c w

c x w

i y ym i ymw i i yx i yw i

yxw i i y i, (20.8),

such that w moderates the effects of x on m and m on y 
(i.e., the “first stage” and “second stage” moderated 
mediation from Edwards & Lambert, 2007), and 
w moderates the direct effect of x on y (i.e., the 
traditional form of moderation). The effects involved 
in this model can be shown by substitution as follows:

( )

( )

= ν + ν + + + + ε

+ ν + + + + ε

+ ′ + ′ + ′ + ε

y b a x a w a x w

b a x a w a x w w

c x c w c x w

i y ym m mx i mw i mxw i i m i

ymw m mx i mw i mxw i i m i i

yx i yw i yxw i i y i, (20.9)

,

,

,

which can be rearranged as follows:

[ ]( ) ( )

( )

( )

= ν + ν +
ν +

+ + ′












+ + + + ′ + ′

+ + ε + ε

y b
b a b
a b w c

w

a a w b b w c c w x

b b w

i y ym m

ymw m mw ym

mw ymw i yw
i

mx mxw i ym ymw i yx yxw i i

ym ymw i m i y i, (20.10), ,

which has a similar interpretation as Equation 20.6, 
such that the first bracketed term is the simple 
intercept of y, which includes indirect and direct 

effects of w; the second bracketed term is the total 
effect of x, which is composed of first the indirect effect 
(amx + amxwwi)(bym + bymwwi) and then the direct effect 
(c′yx + c′yxwwi); the first parenthetical term on the third 
line is the direct effect of m, which is moderated by 
w; and the final term is the residual of y.

For the uninitiated reader to fluently understand 
moderated mediation in Equation 20.10, some 
explanation is in order. Focusing on the effect of x in 
the second bracketed term, the moderation coefficients 
are amxw and bymw. Both of these are multiplied by w 
so that when both coefficients are equal to zero, 
moderation is not present and Equation 20.10 is more 
like Equation 20.6 because the indirect effect of x 
reduces to amxbym. However, if amxw ≠ 0 and/or  
bymw ≠ 0, moderation is present. Specifically, amxw 
allows for moderation of the path linking the 
independent variable and the mediator (i.e., the  
amx path) and bymw allows for moderation of the path 
linking the mediator and the dependent variable  
(i.e., the bym path). But because bym is part of the indirect 
effects involving paths amx and amxw, both of these paths 
can be moderated by w when multiplied by bymw.

As the reader may intuit, there are many ways to 
specify moderated mediation (see Hayes, 2013, 2015, 
2018). Instead of describing the many cases that are 
possible, we want to offer a general model structure 
for understanding moderated mediation that can be 
extended to the multilevel case. We now do this with a 
general SEM specification (e.g., Edwards & Lambert, 
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FIGURE 20.3.    (a) A conceptual diagram of our single-level moderated mediation model. (b) A path diagram 
of our single-level moderated mediation model, wherein predictor covariances are explicitly estimated, 
including a covariance among m and mw. Path coefficients are labeled as in our equations, with a terms 
indicating initial paths in a mediation/indirect effects equation, b terms indicating second paths in a  
mediation/indirect effects equation, and c′ paths indicating direct effects.



Moderated Mediation in Multilevel Structural Equation Models

477

2007; Hayes & Preacher, 2013). Here, and in our 
multilevel models, we use variants and simplifications 
of the model in Muthén and Asparouhov (2008) as 
implemented in Mplus (see Muthén & Muthén, 2016; 
see also Preacher et al., 2010, 2016).

A General Structural Equation Model 
Specification and Estimation
To begin, we show an “all y” SEM specification 
as follows:

(20.11)νν ΛΛηη εε= + +i i iy

ηη αα ΒΒηη ζζ= + +i i i, (20.12)

wherein yi is a vector of observed scores on 
the dependent variables (often called observed 
indicators); v is a vector of intercepts capturing the 
mean structure of the data; L is a matrix of factor 
loadings representing the strength and direction 
of relationships among latent variables and their 
observed indicators; di is a vector of residuals with 
covariance matrix Q (typically with unrestricted 
diagonal elements, i.e., estimated variances); gi is 
typically a vector of latent variables that are believed to 
cause the covariance structure of observed indicators, 
but it may also be used to reflect the actual observed 
variables if L contains unities that link each observed 
variable with a single latent variable and elements in 
v and Q are fixed at zero; ` is a vector of intercepts 
or means corresponding to a latent variable mean 
structure (typically restricted to zero); B is a matrix 
of regression coefficients often used to model causal 
effects among latent variables; and yi is a matrix of 
residuals with covariance matrix Y (typically with 
unrestricted diagonal elements, i.e., variances). In 
the case of latent interactions, gi can be used to stack 
products of latent variables so that all observed, latent, 
and product-term variables can be understood as 
existing in gi—this is useful for concision, reducing 
the complexity of our equations (for more technical 
treatments, see Klein & Moosbrugger, 2000; Klein & 
Muthén, 2007; Preacher et al., 2016).

The result is that in Equations 20.11 and 20.12, all 
moderation, mediation, and moderated mediation 
effects are either contained in B, or they can be 
constructed from elements in B. For example, 
Equations 20.7 and 20.8 can be shown in the form 
of Equations 20.11 and 20.12 as follows:
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Here, by constraining the values of v, L, and di, 
Equation 20.13 equates the terms in gi to the 
observed variables in yi. Furthermore, the constraints 
imposed in Equation 20.14 result in any variables 
that are both predictors of the same outcome and are 
not related in B having an unrestricted relationship 
in Y. Given this ordering of variables in gi, for 
example, the matrix Y might be shown as

ΨΨ =
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,
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,

, ,

, , ,

, , , , ,

wherein the diagonal elements are variances or 
residual variances, and off-diagonal elements are 
covariances or residual covariances.

Estimation can be accomplished with a variety 
of tools. SEM is typically estimated with maximum 
likelihood, which may be robust to nonnormality 
and the nonindependence of observations (as in 
Muthén & Muthén, 2016). However, Bayesian 
approaches are also possible (see Muthén & 
Asparouhov, 2012). In all cases, estimators of 
uncertainty such as CIs for indirect effects should 
not be based on normal theory.

Single-Level Moderated Mediation: 
Race in High School and Beyond
Using SEM, any combination of parameters can 
be estimated and used to examine moderated 
mediation (e.g., using Mplus features such as 
“model indirect” and “model constraint”; Muthén 
& Muthén, 2016). To show this, we use the  
HS&B data (see online Mplus files in “Single.Level.
Modmed.zip”). For illustrative purposes,  
we treat the data as single-level and use a sandwich 
estimator to adjust SEs for nonindependence 
(with “Type=Complex” and “Cluster=school” in 
Mplus). To derive all CIs reported in the following 
text, we use a Monte Carlo approach that allows 
estimating CIs in the presence of clustered data 

(which presents difficulty for more common 
nonparametric bootstrapping; see Preacher & 
Selig, 2012; online Mplus files in “MonteCarlo.
CI.zip”). Throughout, when SEs conform to
normal theory, we present p-values rather than
CIs. We would not normally recommend a single-
level approach for these data, but working with
this example allows us to contrast single-level
results with the multilevel results we present later.

The variables we use are: student math achieve­
ment, with higher scores implying greater 
achievement on a standardized test; student SES, 
with higher scores meaning higher parental income, 
education, occupational attainment, and education-
related possessions such as books; student race, 
wherein 1 = Black and 0 = other; and student gender, 
wherein 0 = male and 1 = female. More details  
about the variables can be found in the publication 
on the HS&B data by National Opinion Research 
Center (1980).

We estimate a model wherein math achieve
ment y is a function of SES m and race x, with 
SES m also being a function of race x. This model 
allows estimating some effects of being Black in 
the United States, which can negatively affect 
math achievement directly and indirectly via SES 
(Altonji & Blank, 1999; Bertrand & Mullainathan, 
2004; Bonilla-Silva, 2006; Steele & Aronson, 
1995). Similar negative effects are known in the 
epidemiology literature, pointing to negative effects 
of being Black in the United States on health and 
other outcomes both directly and via SES (Navarro, 
1990; Ren, Amick, & Williams, 1999). Furthermore, 
this is a sensible model in terms of causality 
because we assume that changes in student math 
achievement cannot influence parental SES and 
that changes in math achievement or parental SES 
cannot influence individual race.

We allow gender w to moderate all relationships 
(as in Equations 20.7–20.10, 20.13, and 20.14). This 
moderator is sensitive to different forms of race-
based differences for Black men versus Black women 
(see Galinsky, Hall, & Cuddy, 2013; Hall, Hall, & 
Perry, 2016; Thomas, Witherspoon, & Speight, 
2008; Tomaskovic-Devey, 1993; Wingfield, 2007). 
Because of such gender differences, the direct and 
indirect effects of race may differ for males versus 
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females, and any direct effect of SES may differ. As 
with race, changes in other study variables cannot 
influence gender.

Table 20.1 displays model parameters. On 
the basis of Equation 20.10, we can define 
multiple effects that will be of interest. These are 
specified under “model constraint” in the Mplus 
input and shown in Table 20.2. To understand 
their construction, we formally define them and 
explain their substantive meaning. Although w is 
categorical, our logic also works for continuous 
moderators by choosing relevant values of w (e.g., 
1 standard deviation above and below the mean) to 
make comparisons like those we describe.

First, we define the indirect effect for females, 
which is the simple slope of the indirect effect when 
the moderator gender = 1 (i.e., w = 1). This is

( ) ( )( ) ( )+ + = + +a a w b b w a a b bmx mxw i ym ymw i mx mxw ym ymw ,
(20.16)

which is the indirect effect of race on math achieve
ment via SES for females and is –1.255 with 95% CI 
[–1.634, –.867], indicating that Black females have 

TABLE 20.2

Single-Level Moderated Mediation Model’s Further Calculated Parameters

Parameter name Lower 2.5% Estimate Upper 97.5% Standard error p value

Female
Indirect race effect –1.634 –1.255 –.867 — —
Direct race effect — –2.694 — .412 <.001
Total race effect –4.926 –3.949 –2.947 — —
SES effect — 2.827 — .173 <.001

Male
Indirect race effect –1.604 –1.27 –.954 — —
Direct race effect — –3.012 — .368 <.001
Total race effect –5.117 –4.282 –3.432 — —
SES effect — 2.515 — .211 <.001

Difference in effects 
  (male–female)

Indirect race effect –0.444 –.015 .397 — —
Direct race effect — –.318 — .481   .509
Total race effect –1.396 –.333 .719 — —
SES effect (bymw) — –.312 — .261   .232

Note. Where parameters involve products of coefficients, confidence intervals are generated by Monte Carlo using 
parameter estimates and their asymptotic covariance matrix with 10,000 draws. SES = socioeconomic status.

TABLE 20.1

Single-Level Moderated Mediation Model 
Parameters

Parameter Estimate

Standard 

error p value

SES parameters
vm (SES intercept) .192 — —
amx (race→SES) –.505 .064 <.001
amw (gender→SES) –.117 .039 .002
amxw (race*gender→SES) .061 .078 .432

Math achievement 
  parameters

vy (MA intercept) 14.31 — —
bym (SES→MA) 2.515 .211 <.001
bymw (SES*gender→MA) .312 .261 .232
c′yx (race→MA) –3.012 .368 <.001
c′yw (gender→MA) –1.466 .251 <.001
c′yxw (race*gender→MA) .318 .481 .509

Note. MA = math achievement; SES = socioeconomic 
status.
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lower math achievement due to the effect of their race 
on their SES. The equivalent conditional indirect effect 
for males is when gender = 0 (i.e., w = 0) or

( )( )+ + =a a w b b w a bmx mxw i ym ymw i mx ym, (20.17)

which defines the indirect effect of race on math 
achievement via SES for males and is –1.27 with 95% 
CI [–1.604, –.954], indicating that Black males have 
lower math achievement due to the effect of their race 
on their SES. In turn, the difference in the indirect 
effects for men versus women is defined as follows:

( )

( )

( )− + +

= − + +

a b a a b b

a b a b a b

mx ym mx mxw ym ymw

mx ymw mxw ym mxw ymw . (20.18)

This difference is interpreted as the moderating 
effect of gender on the indirect effect of race on 
math achievement via SES while holding the direct 
effect of race constant. This difference is –.015 with 
95% CI [–.444, .397], indicating no statistically 
significant difference between males and females in 
the indirect effect of race on math achievement via 
SES—although the point estimate of –.015 means 
the indirect effect of race appears to be slightly more 
negative for males, the CI centering almost on zero.

Comparing the direct effects of race on math 
achievement shows a similar pattern. For females 
(w = 1) this effect is

′ + ′ = ′ + ′c c w c cyx yxw i yx yxw, (20.19)

which describes the direct effect of race on math 
achievement for females and is –2.694 (p < .001), 
indicating that Black females have lower math 
achievement. The effect for males (w = 0) is

′ + ′ = ′c c w cyx yxw i yx , (20.20)

which describes the direct effect of race on math 
achievement for males and is –3.012 (p < .001), 
indicating that Black males have lower math 
achievement. In turn, the difference in male versus 
female direct effects is

( )′ − ′ + ′ = − ′c c c cyx yx yxw yxw. (20.21)

This difference is interpreted as the conditional 
interaction between race and gender (because SES 

is controlled for) and is –.318 (p = .509), indicating 
no statistically significant difference between males 
and females in the direct effect of race on math 
achievement.

For total effects, the same logic applies, so that 
the effect for females (w = 1) is

( ) ( )

( ) ( )

( )

( )

+ + + ′ + ′

= + + + ′ + ′

a a w b b w c c w

a a b b c c

mx mxw i ym ymw i yx yxw i

mx mxw ym ymw yx yxw , (20.22)

which is the overall effect of race on math achieve
ment for females and is –3.949 with 95% CI 
[–4.926, –2.947], indicating that for females, race 
has an overall negative effect on math achievement. 
For males (w = 0) this is

( ) ( )( )+ + + ′ + ′

= + ′

a a w b b w c c w

a b c

mx mxw i ym ymw i yx yxw i

mx ym yx , (20.23)

which describes the overall effect of race on math 
achievement for males and is –4.282 with 95% CI 
[–5.117, –3.432], indicating that for males race has 
an overall negative effect on math achievement. In 
turn, the difference in these effects for males versus 
females is

[ ]( ) ( )

( )

( )+ ′ − + + + ′ + ′

= − + + + ′

a b c a a b b c c

a b a b a b c

mx ym yx mx mxw ym ymw yx yxw

mx ymw mxw ym mxw ymw yxw . (20.24)

This difference is interpreted as the moderating 
effect of gender on the effect of race on math 
achievement. This difference is –.333 with 95% CI 
[–1.396, .719], indicating no statistically significant 
difference between males and females in the overall 
effect of race on math achievement.

The direct effect of SES can also be estimated. 
For females (w = 1), this is

+ = +b b w b bym ymw i ym ymw, (20.25)

which describes the effect of SES on math 
achievement for females while holding race 
constant. This effect is 2.827 (p < .001), indicating 
that higher SES for females leads to higher math 
achievement. The same effect for males (w = 0) is

+ =b b w bym ymw i ym, (20.26)
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which describes the effect of SES on math achieve
ment for males while holding race constant. This 
effect is 2.515 (p < .001), indicating that higher SES 
for males leads to higher math achievement. In turn, 
their difference is simply

− + = −b b b bym ym ymw ymw( ) , (20.27)

which describes the moderating effect of gender on 
the effect of SES on math achievement while holding 
race constant. This is –.312 (p = .232), indicating no 
statistically significant difference between males and 
females in the effect of SES on math achievement 
while holding race constant.

Overall, the pattern of results for race is 
consistent with the long-running history of racism 
in the United States. The effects of being Black on 
math achievement are negative, both indirectly 
via SES and directly. This is predictable given the 
substantial literature on racism and its effects 
both generally (e.g., Bonilla-Silva, 2006) and on 
standardized test scores specifically (e.g., Steele & 
Aronson, 1995). However, contrary to what some 
research may suggest (e.g., Galinsky et al., 2013), 
we find no moderating effect of gender, even when 
testing direct effects of SES.

MULTILEVEL MODERATED MEDIATION 
IN MULTILEVEL STRUCTURAL 
EQUATION MODELS

Unfortunately, these models and analyses are 
insensitive to the clustering in our data except that 
they adjust SEs. When children are nested in schools 
or data are otherwise grouped, different variances 
and effects are mixed: between group and within 
group (Cronbach, 1976; Cronbach & Snow, 1977; 
Cronbach & Webb, 1975; Preacher et al., 2010, 
2016; Zhang, Zyphur, & Preacher, 2009). Between-
group variances and effects are related to group 
means, whereas within-group variances and effects 
are related to deviations away from the means (as 
in analysis of variance [ANOVA]). In turn, when 
analyzing data and making inferences, within-
group terms represent individuals (e.g., students) 
and between-group terms represent groups (e.g., 
schools). To motivate this style of representation, 
we first justify it as follows.

Motivating the Study of Race Between 
and Within Schools
Our position (e.g., Preacher et al., 2010, 2011, 2016; 
Zhang et al., 2009) is that by ignoring clustering, 
single-level analyses create “uninterpretable blends” 
of variances and effects that are attributable to 
different kinds of things—students versus schools 
(Cronbach, 1976, p. 9.20). Furthermore, differences 
in the magnitudes of these terms across levels 
of analysis “occur with considerable regularity” 
(Raudenbush & Bryk, 2002, p. 140), and these 
differences have critical implications for substantive 
interventions that might be designed to target 
entire groups (e.g., schools) versus the individuals 
residing within them. The job of the data scientist 
who endeavors to inform intervention or policy 
planning is to decompose variances and effects so 
that inferences about different kinds of entities can 
be unambiguously made in light of the clustered 
structure of a data set.

Despite the long recognition of the need to 
decompose level-specific effects (e.g., Dansereau & 
Yammarino, 2000), there is some debate regarding 
this point, especially for mediation and moderation 
analyses (e.g., Pituch & Stapleton, 2012; Tofighi & 
Thoemmes, 2014). Therefore, we clarify our views 
and then connect them to the case of multilevel 
moderated mediation to study race in the HS&B 
data. First, consider a data set with information 
from students in a single school j = 1 and a simple 
bivariate model:

= ν + β + εy xi i i . (20.28)1 1 1

Here, β is the effect of x on y for all students in 
school j = 1. As with all single-level regression 
models, we and most other researchers would refer 
to β as an individual-level effect. However, what 
researchers mean is that β is a within-school effect, 
which becomes clear by rewriting Equation 20.28 
in terms of variances, covariances, and means 
as follows:

( )= µ + σ
σ

− µ + εy xi y
xy

x

i x i , (20.29)1 2 1 1

wherein µ terms are means, σxy is x-y covariance, 
and σx

2 is the variance of x.
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As Equation 20.29 shows, group means play 
no part in deriving β in single-level analyses—
the means for y and x could be changed by any 
value and β would be unchanged. Also, statistical 
inference with SEs is a function of εi1, which is a 
within-school term. In turn, so-called individual-
level analyses with data from a single group 
estimate within-group effects, meaning that when 
researchers make inferences about individuals, they 
have all along been making within-group inferences 
(i.e., inferences about individuals that are always 
relative to the mean of the group). Therefore, 
consistent with typical regression practices, we 
recommend using within-group terms to make 
inferences about individuals.

To further illustrate this point, consider the 
HS&B data with N students in J schools. To make 
inferences about students, any confounding 
“unobserved heterogeneity” associated with schools 
should be controlled. This kind of “fixed-effects” 
model—in econometrics terms—can be constructed 
by creating J-1 indicator variables (e.g., dummy 
codes) in a vector zj as follows:

δδ= ν + β + ′ + εy xij ij j j ij. (20.30)z

Here, the effect of school membership is accounted 
for by the coefficients in the vector cj and the effect 
of x on y for students is still β, which is a within-
group term, as is εij (which is used for statistical 
inference with SEs). Furthermore, by accounting 
for the “school effects” cj, what is really occurring is 
that the school means are being entirely accounted 
for, which is to say that cj is accounting for all 
between-school variance, which is associated 
with schools—to emphasize, in this kind of fixed-
effects model, there is no remaining between-
school variance that can be accounted for with 
any additional predictors. In other words, when 
attempting to make inferences about individuals 
while controlling for group effects, researchers focus 
on within-group variance to make inferences about 
individuals and control for between-group variance 
to model the effect of groups, as is done when 
“within-group centering” data by eliminating group 
means (Preacher et al., 2010).

Moreover, to motivate inferences about groups by 
using between-group variances and effects, consider 

an experiment wherein researchers randomly assign 
participants to a control group xj=1 or an experimental 
group xj=2. To make an inference about the effect of 
interest, researchers must model the effect of group 
membership, which can be shown as follows:

= ν + β + εy xij j ij, (20.31)

wherein the model now reflects terms for an 
individual i and a group j, with x coding for group 
membership. Here, the effect of interest is β, 
which in an ANOVA framework is well known as 
a between-group effect, capturing the difference 
between the two group means. Here, researchers do 
not substantively care about εij because this within-
group term is typically regarded as being due to 
individual or subject-specific effects.

In all these cases—typical regression models, 
fixed-effects regression controlling for group effects, 
and ANOVA—researchers always make inferences 
about individuals using within-group variances 
or effects that model deviations away from group 
means, and inferences are made about groups using 
between-group variances or effects that model 
group means. Therefore, in all our models we 
decompose the between- and within-group parts of 
any observed variables measured at the “individual” 
level, so accurate inferences can be made about the 
appropriate kinds of things that are being assessed 
(e.g., students, schools, communities). Such 
decomposition of level-specific effects has long been 
recommended in the literature (e.g., Cronbach, 
1976; Cronbach & Webb, 1975; Dansereau & 
Yammarino, 2000; Kozlowski & Klein, 2000), but 
this work is often overlooked.

For studying race, separating student versus 
school effects is key because different processes can 
influence students within schools versus schools as 
wholes (Benner & Graham, 2013), especially because 
schools are typically defined by local environments 
such as neighborhoods. Although Black students 
in a school may experience individualized forms 
of racism as noted previously (motivating a focus 
on within-school effects), there is evidence that 
collective “institutional” racism has profound effects. 
For example, formal and informal segregationist 
agendas in the United States drove Black individuals 
into poor and blighted neighborhoods (Massey & 
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Denton, 1993; Seitles, 1998; Williams & Collins, 
2001)—an infamous example is the design of low 
bridge overpasses to keep Black bus passengers from 
crossing into upper-class White neighborhoods 
(Caro, 1974). In addition to being excluded from 
important social capital, institutional racism has 
had profound effects, including poorer nutrition, 
education, and employment rates, as well as 
community problems that make life unstable, 
stressful, and emotionally hard (Seaton & Yip, 2009; 
Umaña-Taylor, 2016; Williams, 1999; Williams & 
Williams-Morris, 2000).

In turn, institutional racism causes covariance 
between racial composition, such as the proportion 
of Black students in a school, and the collective 
testing outcomes at a school. This effect may operate 
directly, but it can also function indirectly through 
collective SES, which further reflects the problems 
of poorer neighborhoods and schools (e.g., Pickett 
& Pearl, 2001). As a moderator, gender composition 
could influence these effects because of the different 
ways that Black males and females are collectively 
treated (Hall et al., 2016; Wingfield, 2007).

Therefore, it is reasonable to decompose the 
between- versus within-school parts of observed 
variables to examine collective versus individual 
effects of race. To do so, we now introduce 
multilevel approaches to moderation, mediation, 
and moderated mediation.

Multilevel Moderation
To understand MSEM for the purposes of multi
level moderated mediation analyses, we begin by 
extending moderation, mediation, and moderated 
mediation models from Equations 20.1, 20.3, 20.4, 
20.7, and 20.8 to the multilevel case. In these 
models, observed variables such as y will typically 
reflect within- and between-group components 
when data are clustered or otherwise nested. These 
components can be decomposed as follows:

= +y y yij Bj Wij, (20.32)

wherein a B subscript indicates a between-group 
part (e.g., a school mean, sometimes referred to as 
a random intercept) and a W subscript indicates a 
within-group part (e.g., a student’s relative standing 
after subtracting the school mean).

In turn, the moderation model in Equation 20.1 
can be reformulated by decomposing the B and W 
parts of all relevant variables as follows (for concision, 
we omit random slopes as regression coefficients that 
vary across groups, which are possible in our MSEM 
approach):

(20.33),= ν + + + + εy c x c w c x wBj By Byx Bj Byw Bj Byxw Bj Bj By j

= + + + εy c x c w c x wWij Wyx Wij Wyw Wij Wyxw Wij Wij Wy ij, (20.34),

wherein all terms are as before, but B terms denote 
between-school	 variables or effects and W terms 
denote within-school variables or effects. Notice 
that the intercept for y in Equation 20.33 is a B term, 
which is consistent with our arguments related 
to Equations 20.28 to 20.31. Notice also that the 
product terms xBjwBj and xWijwWij are not (xw)Bj and 
(xw)Wij, because the latter implies first multiplying 
x and w and then decomposing the B and W parts 
of the product term, which is not the same as 
multiplying the B and W components (Preacher  
et al., 2016).

The point of Equations 20.33 and 20.34 is that 
the B coefficients can be used to make inferences 
about groups (e.g., schools), and the W coefficients 
can be used to make inferences about individuals, 
who are by design nested in the groups. The 
moderation effects cByxw and cWyxw have the same 
interpretation as previously, except they apply to 
moderation of B and W effects—similar operations 
as in Equation 20.2 can define B and W moderation 
(Preacher et al., 2016).

Multilevel Mediation
The same is true for the mediation model in 
Equations 20.3 and 20.4, which in a multilevel 
framework would be

= ν + + εm a xBj Bm Bmx Bj Bm j (20.35),

= ν + + ′ + εy b m c xBj By Bym Bj Byx Bj By j (20.36),

= + εm a xWij Wmx Wij Wm ij (20.37),

= + ′ + εy b m c xWij Wym Wij Wyx Wij Wy ij, (20.38),

wherein all terms are as before and with similar 
interpretations, except the B parts apply to groups 
(e.g., schools) and the W parts apply to individuals, 
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who are nested within groups. Furthermore, the 
same logic of mediation exists, with B and W 
indirect effects being aBmxbBym and aWmxbWym, 
respectively—the reader can perform the same 
operations as in Equations 20.5 and 20.6 for both 
B and W mediation (Preacher et al., 2010).

Multilevel Moderated Mediation
Multilevel moderated mediation implies the same 
straightforward extension to the B and W case, so 
that Equations 20.7 and 20.8 become (again, for 
concision, we omit random slopes)

= ν + + + + εm a x a w a x wBj Bm Bmx Bj Bmw Bj Bmxw Bj Bj Bm j

(20.39)
,

= ν + + + ′

+ ′ + ′ + ε

y b m b m w c x

c w c x w

Bj By Bym Bj Bymw Bj Bj Byx Bj

Byw Bj Byxw Bj Bj By j (20.40),

= + + + εm a x a w a x wWij Wmx Wij Wmw Wij Wmxw Wij Wij Wm ij

(20.41)
,

= + + ′

+ ′ + ′ + ε

y b m b m w c x

c w c x w

Wij Wym Wij Wymw Wij Wij Wyx Wij

Wyw Wij Wyxw Wij Wij Wy ij,
(20.42)

,

wherein moderated mediation has the same familiar 
form, except with separate B and W parts to allow 
inference to groups and individuals. In turn, the same 
operations we used to explain moderated mediation 
after Equation 20.8 apply to Equations 20.39 to 
20.42, with B indirect and direct effects for groups as 
(aBmx + aBmxwwBj)(bBym + bBymwwBj) and (c′Byx + c′ByxwwBj), 
respectively, and W indirect and direct effects for 
individuals as (aWmx + aWmxwwWij)(bWym + bWymwwWij) 
and (c′Wyx + c′WyxwwWij), respectively. Here, the reader 
can apply the same logic as with single-level 
analyses, keeping in mind that B effects apply to 
groups and W effects apply to individuals.

A General Multilevel Structural Equation 
Model Specification and Estimation
To estimate terms in Equations 20.33 to 20.42 with 
B and W moderated mediation parameters that 
mirror those in Equations 20.16 to 20.27 (and  
Table 20.1 and 20.2), we extend the SEM in 
Equations 20.11 to 20.15 to the multilevel case. 

We do this succinctly as follows, but we note that 
the interested reader can consult complementary 
treatments in Preacher et al. (2010, 2011, 2016):

ΛΛηη=yij ij (20.43)

(20.44)ηη αα ΒΒ ηη= + + yij j j ij ij

yηη µµ ββηη= + +j j j, (20.45)

wherein the meaning of terms differs from Equations 
20.11 to 20.15.

In Equation 20.43, yij is a vector of observed 
variables; L is a matrix indicating whether variables 
vary within groups, between groups, or both; and gij 
is a vector of latent variables that vary either within 
or between groups. For example, Equation 20.32 
can be formulated as Equation 20.43 to clarify its 
meaning as follows:

ΛΛηη [ ]= =








 = +y

y

y
y yij ij

Bj

Wij

Bj Wij11 , (20.46)

wherein the two elements in L for yij indicate that it 
has W and B parts, contained in gij.

In turn, Equation 20.44 contains the B part of 
observed variables in an intercept vector `j (again, 
these are sometimes referred to as random intercepts), 
the W effects among the W parts of observed variables 
in a matrix Bj, and W residuals in a vector yij. In other 
words, the W structural model is in Bj, and therefore, 
Bj will contain W moderated mediation terms, such as 
those in Equations 20.41 and 20.42.

Alternatively, Equation 20.44 contains B model 
parts as follows: gj contains all B variables of interest 
from gij, but this is done by stacking the B intercepts 
in `j as well as any random slopes from Bj; l is a 
vector of intercepts or grand means; a is a matrix of 
B effects; and yj is a vector of B residuals. In other 
words, the B structural model is in a, and therefore, 
a will contain B moderated mediation terms, such as 
those in Equations 20.39 and 20.40.

Hopefully, by now the reader can infer that 
multilevel moderated mediation merely requires 
applying familiar single-level concepts to the W 
and B model parts in Equations 20.44 and 20.45. 
However, before proceeding, there are a few caveats 
to mention. First, MSEM allows for more flexibility 
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than we can cover here, such as random slopes 
(e.g., for W effects in Bj, which would be stacked 
in gj). Such slopes allow cross-level interactions, 
which may be a useful complement to the multilevel 
moderated mediation we examine here. The 
interested reader can easily pursue this using our 
logic and that in Preacher et al. (2010, 2016), which 
discusses special issues related to the use of random 
slopes and cross-level interactions.

Second, because the B and W parts of an 
observed variable are latent, they must be estimated. 
This estimation can be done by calculating school 
averages, but as in most multilevel models (e.g.,  
Raudenbush & Bryk, 2002), MSEM does this  
using an empirical Bayes approach to account  
for sampling error. However, in some cases, this 
may be unwarranted, and researchers may prefer 
to compute group means for B parts as if they  
were observed (see Lüdtke et al., 2008; Lüdtke, 
Marsh, Robitzsch, & Trautwein, 2011; Marsh  
et al., 2009; Preacher et al., 2016). For HS&B 
data, both individuals and schools were randomly 
sampled, and therefore, empirical Bayes estimation 
is warranted.

Third, in Equations 20.33 and 20.34, we noted 
that xBJwBJ and xWijwWij are not (xw)Bj and (xw)Wij. 
The implication for moderated mediation in MSEM 
is that the reader cannot simply compute observed 
product terms for interacting variables such as 
xijwij and then specify these in yij from Equation 
20.43. The reason is that MSEM decomposes the 
W and B parts of observed variables to account 
for uncertainty associated with sampling error (as 
implied by Equation 20.46).

To estimate W and B moderation requires 
computing product terms for latent B and W 
variables separately, as in xBjwBj and xWijwWij (Preacher 
et al., 2016). This is done in Mplus by putting a 
latent variable “behind” a set of B and W parts of 
observed variables and then forming product terms 
as latent variable interactions—which Preacher et 
al. (2016) specified in their online supplemental 
material. Figure 20.4 shows this, wherein the 
interacting B and W parts of observed variables are 
treated as latent, with the variances of their B and 
W parts fixed to .01 to facilitate convergence (as in 
Preacher et al., 2016). This allows estimating the 

product terms required for multilevel moderation of 
various kinds.

Fourth, the recommended approach to latent 
interactions from Preacher et al. (2016) uses 
LMS, which is implemented in Mplus (see Klein 
& Moosbrugger, 2000; Klein & Muthén, 2007). 
However, this approach can encounter serious 
difficulties with convergence in the case of high-
dimensional numerical integration. For example, the 
model in Figure 20.4 using the HS&B data was not 
estimable with adequate dimensions of numerical 
integration, and we could not achieve convergence 
using the “Integration=Montecarlo” approach to 
this integration as shown in Preacher et al.’s (2016) 
online supplemental material (the reader is invited 
to experiment with the Mplus input in “Multilevel.
ModMed.zip”). This is because our model has 
many latent variables (i.e., three B terms, three W 
terms, as well as their associated latent product 
terms), which is not surprising when combining 
the approaches of Preacher et al. (2016) with that 
of Preacher et al. (2010). Such complexity is to 
be expected with multilevel moderated mediation 
(consider multilevel versions of Hayes, 2018, which 
could even include many random slopes of W model 
parts). Indeed, such complexity is to be expected 
even in the single-level case of moderated mediation 
with latent variables.

Therefore, to avoid numerical integration, we 
use a Bayesian plausible values approach to latent 
variable interactions in Mplus (see Asparouhov 
& Muthén, 2010a, 2010b, 2010c). This approach 
uses Bayesian estimation with default “diffuse” or 
“uninformative” prior probabilities to approximate 
maximum-likelihood estimation (see Muthén & 
Asparouhov, 2012). The key to this estimation 
is that it allows generating a Bayesian analog of 
factor scores for latent variables by sampling  
from their posterior distribution some number 
of times (20 in our case; see Mislevy et al., 1992, 
and Von Davier, Gonzalez, & Mislevy, 2009). 
Interestingly, this is equivalent to a multiple 
imputation method with latent variables treated 
as missing data, which overcomes the need for 
estimating latent variables and their interactions 
directly, which requires computationally difficult 
numerical integration.
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Although research on multiple imputation 
shows that interactions or nonlinear effects should 
be used for imputing observed data (e.g., Bartlett 
et al., 2015; Seaman, Bartlett, & White, 2012; von 
Hippel, 2009), including in the multilevel case 
(Goldstein, Carpenter, & Browne, 2014), our 
approach imputes missing unobserved variables 
rather than observed variables, and therefore, our 
method should capture some of the interaction 
and nonlinear patterns that are a function of the 
observed, nonmissing data. In the multilevel 

case, we expect that latent W and B scores can 
be accurately estimated even without including 
latent products in the model—although there 
are conditions for this being the case, including 
having no missing data (or few missing data) along 
observed variables (for insight, see the previous 
citations). After generating the plausible values 
in a first step, a maximum likelihood procedure is 
used to estimate parameters and compute model fit 
in a second step (Asparouhov & Muthén, 2010a, 
2010b; Enders, 2010), with estimates averaged 
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across the plausible values and SEs adjusted for 
the uncertainty they indicate (as in Rubin, 1987; 
Schafer, 1997).

Our approach has two steps. Step 1: Plausible 
values are generated in Mplus by estimating the 
model of interest without latent interactions, 
using a Bayes estimator with default diffuse/
uninformative prior probability distributions 
(see Mplus files in “Multilevel.ModMed.Plausible.
Values.zip”). Step 2: A model is estimated 
using plausible values as if they were multiple 
imputations (e.g., Rubin, 1987; Schafer, 1997), 
using a typical maximum-likelihood based 
approach, with product terms computed for the 
plausible values to approximate latent interactions 
(see Figure 20.5). This allows treating all B and 
W model parts as if they were observed, with 
uncertainty in latent variable values treated as 
variation across the multiple imputations (i.e., 
differences in the plausible values). To capture 

this uncertainty we use 20 imputations, which  
is a common number for multiple imputations 
(e.g., Rubin, 1987; Schafer, 1997). As the 
reader can grasp by experimenting with the full 
multilevel model and the two-step plausible 
values approach, the latter drastically simplifies 
the estimation of models involving latent 
interactions.

Fifth, and finally, because testing mediation with 
indirect effects cannot use SEs derived from normal 
theory, alternative approaches are recommended that 
we previously described. In the multilevel case with 
latent interactions, the situation is also complicated 
(see Zyphur, Zammuto, & Zhang, 2016). Therefore, 
we use a Monte Carlo approach wherein parameter 
estimates and their asymptotic covariance matrix 
are used to generate 10,000 estimates of effects 
(as in Zyphur et al., 2016; see online Mplus files 
in “MonteCarlo.CI.zip”), which are then used to 
estimate CIs empirically.
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Between- and Within-School Race 
in High School and Beyond
Tables 20.3 and 20.4 display B and W model 
parameters, respectively (see also Figure 20.5). On 
the basis of Equation 20.10, B and W moderated 
mediation effects can be defined for Equations 20.16 
to 20.27 (as applied to Equations 20.39–20.42). 
These are specified under “model constraint” in our 
online Mplus files and shown in Tables 20.5 and 
20.6 for B and W parameters, respectively. Because 
of the many results that exist in these tables, we 
summarize them for the sake of concision as 
follows.

The first thing to observe is that the W effects 
for students follow the same pattern as the single-
level results—the direct and indirect effects of race 
have CIs that do not contain zero, and there is no 
moderation by gender. This similarity is expected 
because single-level analyses allow W parameters 
to dominate when there are many more units of 
observation at the W level compared with the B level 
and when W variances are larger than B variances 
(Preacher et al., 2010, 2016). For findings on the 
effects of race, the implication is that for any given 
student, being Black in the United States is harmful 
for math achievement directly and by having a 
negative effect on SES—again, both effects are 

consistent with the long-running history of racism 
in the United States. However, gender seems to 
make little difference in these effects (although 
Table 20.3 shows that gender does have a sizable 
effect on math achievement, though this effect is 
smaller than the effect of race).

The B effects for schools, however, tell a different 
story. The upper panel of Table 20.6 shows results 
for all-female schools. The indirect effect of race on 
math achievement via SES for a school is –2.553 
when comparing a school of Black females versus a 
school of non-Black females (with a CI not containing 
zero). However, the direct effect of race on math 
achievement for a school is –1.664 when comparing a 
school of Black females versus a school of non-Black 
females (with a CI containing zero). We have two 
important notes regarding this result. First, because 
variables often have distinctive meanings, varying 
measurement metrics and different reliabilities at 
W versus B levels (Bliese, 2000; Kozlowski & Klein, 
2000), their path coefficients and the associated 
indirect effects are not readily comparable across 
levels. For example, the B indirect effect of –2.553 is 
not directly comparable to the same W indirect effect 
of –.652 because the units of analysis are different. 
This said, at each level, the same variable’s direct 

TABLE 20.3

Within-Level Moderated Mediation Model 
Parameters

Parameter Estimate

Standard 

error p value

SES effects
aWmx (race→SES) –.34 .037 <.001
aWmw (gender→SES) –.083 .018 <.001
aWmxw (race*gender→SES) .06 .068   .377

Math achievement effects
bWym (SES→MA) 1.916 .118 <.001
bWymw (SES*gender→MA) .415 .277 .134
c′Wyx (race→MA) –2.946 .259 <.001
c′Wyw (gender→MA) –1.161 .183 <.001
c′Wyxw (race*gender→MA) .534 .514   .299

Note. MA = math achievement; SES = socioeconomic 
status.

TABLE 20.4

Between-Level Moderated Mediation Model 
Parameters

Parameter Estimate

Standard 

error p value

SES effects
vBm (SES intercept) .324 — —
aBmx (race→SES) –.782 .222 <.001
aBmw (gender→SES) –.291 .166 <.001
aBmxw (race*gender→SES) .234 .39 .149

Math achievement effects
vBy (MA intercept) 13.761 — —
bBym (SES→MA) 6.505 .99 <.001
bBymw (SES*gender→MA) –1.859 1.46 .203
c ′Byx (race→MA) –.875 1.279 .494
c′Byw (gender→MA) –1.440 1.085 .184
c′Byxw (race*gender→MA) –.788 2.105 .708

Note. MA = math achievement; SES = socioeconomic 
status.
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TABLE 20.5

Within-Level Moderated Mediation Model’s Further Calculated Parameters

Parameter name Lower 2.5% Estimate Upper 97.5% Standard error p value

Female
Indirect race effect –1.06 –0.652 –.305 — —
Direct race effect — –2.412 — .507 <.001
Total race effect –4.218 –3.064 –1.915 — —
SES effect — 2.332 — .300 <.001

Male
Indirect race effect –.824 –.651 –.497 — —
Direct race effect — –2.946 — .259 <.001
Total race effect –4.164 –3.597 –3.032 — —
SES effect — 1.916 — .118 <.001

Difference in effects 
  (male–female)

Indirect race effect –.319 .001 .367 — —
Direct race effect — –.534 — .514 .299
Total race effect –1.563 –.533 .476 — —
SES effect (bWymw) — .415 — .277 .134

Note. Where parameters involve products of coefficients, confidence intervals are generated by Monte Carlo using 
parameter estimates and their asymptotic covariance matrix with 10,000 draws. SES = socioeconomic status.

TABLE 20.6

Between-Level Moderated Mediation Model’s Further Calculated Parameters

Parameter name Lower 2.5% Estimate Upper 97.5% Standard error p value

Female
Indirect race effect –4.145 –2.553 –.893 — —
Direct race effect — –1.664 — 1.105 .132
Total race effect –6.512 –4.217 –1.475 — —
SES effect — 4.646 — .713 <.001

Male
Indirect race effect –7.357 –5.077 –2.913 — —
Direct race effect — –.875 — 1.279 .494
Total race effect –8.452 –5.953 –3.151 — —
SES effect — 6.505 — .99 <.001

Difference in effects 
  (male–female)

Indirect race effect –5.907 –2.524 .704 — —
Direct race effect — .788 — 2.105 .708
Total race effect –6.09 –1.736 2.698 — —
SES effect (bBymw) — –1.859 — 1.46 .203

Note. Where parameters involve products of coefficients, confidence intervals are generated by Monte Carlo using 
parameter estimates and their asymptotic covariance matrix with 10,000 draws. SES = socioeconomic status.
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and indirect effects can be compared and the relative 
magnitude of these effects can be informative (e.g., 
the W direct effect for females is –2.412 and the W 
indirect effect is –.652). Also, the level-specific ratios 
of direct versus indirect effects are not influenced by 
measurement metrics and can be compared across B 
and W levels. Second, we used theoretically extreme 
values for the B-level moderator’s high versus low 
conditions (i.e., a school’s gender composition 
can be 100% female or 100% male). We similarly 
used extreme values for the school-level race 
variable such that a school can be 100% Black or 
100% non-Black. Using extreme values helps our 
interpretation of the conditional indirect effects given 
the categorical predictor and moderator variables. 
When a continuous moderator is examined, the more 
conventional approach is to use one level-specific 
standard deviation above and below its level-specific 
mean to calculate indirect effects at B and W levels. 
Overall, these findings show that for all-female 
schools, school-level race appears to influence school-
level math achievement via school-level SES. This 
finding might be driven by neighborhood-level and 
school-level variables related to poverty. However, 
there is no direct effect of school-level race on  
school-level math achievement.

The same pattern of findings holds for Black 
males in all-male schools. As shown in the middle 
panel of Table 20.6, the indirect effect of school-
level race on school-level math achievement via 
school-level SES for a school consisting solely of 
Black males is –5.077 when comparing a school 
of Black males versus a school of non-Black males 
(with a CI not containing zero). However, the 
direct effect yields a different conclusion, namely 
that the effect of school-level race on school-level 
math achievement for a school composed solely 
of Black males is –.875 when compared with a 
school of non-Black males (with a CI including 
zero). Therefore, again, for an entire male-only 
school, the effect of race appears to operate only 
indirectly via SES. Comparing the all-male school 
versus all-female school conditions, the difference in 
indirect effects has a confidence interval including 
zero (i.e., [–5.907, .704]). Therefore, school-level 
gender does not moderate the indirect effect of race 
on math achievement via school-level SES.

In sum, these results indicate that being a Black 
student in the United States has negative effects 
on math achievement, both directly and indirectly 
via SES, with the direct effects being stronger than 
those via SES. However, for schools as wholes,  
this is not the case. Consistent with centuries  
of institutional racism and other forms of injustice 
that cause a correlation between race and SES at 
the neighborhood and community levels (Bonilla-
Silva, 2006), lower test scores for all-Black schools 
(regardless of gender) appear to be entirely due to 
SES. The implication is that, at the school level, the 
poverty and socioeconomic exclusion associated 
with racial differences may explain the effect of 
race on a school’s math achievement. Overall, 
to address differences in test scores, the United 
States—like other countries—must do more to 
create racial equality by reducing the relationship 
between racial categories and important outcomes 
and socioeconomic resources.

DISCUSSION

We have described a novel approach for investigating 
multilevel moderated mediation using MSEM. Both 
conceptually and by example, we explored just one 
of the many possibilities for estimating these models, 
including a novel plausible values approach that 
avoids numerical integration—which would have 
otherwise derailed our analyses. Future work can 
explore specific cases that include random slopes and 
variables that vary only at the between-groups levels 
of analysis (see thorough treatments in Preacher 
et al., 2010, 2016). In all cases, the between- and 
within-groups parts of observed variables can be 
used to make inferences to higher versus lower  
level entities.

Our plausible values approach can be used for 
any model wherein latent interactions or power 
polynomials would otherwise require numerical 
integration and observed data provide adequate 
information to estimate latent standings. Therefore, 
this might be useful for single-level models that 
rely on LMS or other computationally intensive 
methods (e.g., Sardeshmukh & Vandenberg, 2016). 
Our plausible values approach has the benefit of 
allowing comparatively fast estimation when the 
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number of multiple imputations is not overly large, 
but it does require various conditions being met 
that we will explore in a future paper. However, we 
do offer a word of caution when using asymptotic 
(co)variances of parameter estimates to compute 
CIs with a Monte Carlo procedure, as we use 
here. Because these covariances are meant to be 
asymptotic with similar estimation assumptions as a 
maximum likelihood estimator, researchers may be 
motivated to produce many multiple imputations, 
perhaps 1,000 or 10,000. For the purpose of our 
example and to make our online supplemental 
materials easier to download, we limited the number 
of imputations to 20, which is common in the 
multiple imputation and plausible values literatures 
(e.g., Mislevy et al., 1992; Rubin, 1987; Schafer, 
1997; Von Davier et al., 2009).

Beyond concerns regarding the number of 
imputations, there are additional limitations 
with our approach and inferences that should 
be recognized. First, our data are from 1979 and 
therefore may no longer be a good representation 
of the United States in various ways, including 
the Black and non-Black composition of schools. 
Second, related to this composition, the inferences 
we make at the school level are based on some 
extrapolations from our data (i.e., theoretically 
extreme values for school-level race and school-level 
gender). Although there are schools in our sample 
and in the United States wherein students are almost 
all Black or all non-Black (indeed, the overall trend 
of this segregation is getting worse rather than 
better in public schools; see Frankenberg & Lee, 
2002), no schools in our sample were composed of 
all-Black males or all-Black females. Therefore, our 
inferences regarding moderated mediation warrant 
some caution at the school level because they cannot 
be clearly mapped onto observed ranges in the 
data (this is a general problem for interpreting and 
reporting effects that involve moderation; see Hayes, 
2013; Hayes & Preacher, 2013).

In conclusion, whether estimating multilevel 
moderated mediation or other effects, we hope 
that we have shown the potential power of 
statistical modeling to produce images of people 
and society that can motivate practical action. 
In terms of race, it is clear that the United States 

and other nations have a long way to go before 
justice or equality will be realized, and therefore, 
additional steps should be taken to eliminate racial 
inequalities. In our view, this should be the goal of 
statistical analyses: to motivate changes that make 
a difference.
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