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This article describes some potential uses of Bayesian estimation for time-series and
panel data models by incorporating information from prior probabilities (i.e., priors)
in addition to observed data. Drawing on econometrics and other literatures we
illustrate the use of informative “shrinkage” or “small variance” priors (including so-
called “Minnesota priors”) while extending prior work on the general cross-lagged panel
model (GCLM). Using a panel dataset of national income and subjective well-being
(SWB) we describe three key benefits of these priors. First, they shrink parameter
estimates toward zero or toward each other for time-varying parameters, which lends
additional support for an income → SWB effect that is not supported with maximum
likelihood (ML). This is useful because, second, these priors increase model parsimony
and the stability of estimates (keeping them within more reasonable bounds) and thus
improve out-of-sample predictions and interpretability, which means estimated effect
should also be more trustworthy than under ML. Third, these priors allow estimating
otherwise under-identified models under ML, allowing higher-order lagged effects and
time-varying parameters that are otherwise impossible to estimate using observed data
alone. In conclusion we note some of the responsibilities that come with the use of
priors which, departing from typical commentaries on their scientific applications, we
describe as involving reflection on how best to apply modeling tools to address matters
of worldly concern.

Keywords: panel data model, Granger causality (VAR), Bayesian, shrinkage estimation, small-variance priors

FROM DATA TO CAUSES III: BAYESIAN PRIORS FOR GENERAL
CROSS-LAGGED PANEL DATA MODELS (GCLM)

Panel data models track multiple independent units N over multiple occasions of measurement
T with parameters typically estimated by frequentist methods (e.g., Arellano, 2003; Baltagi, 2013;
Little, 2013; Allison, 2014; Hsiao, 2014; Hamaker et al., 2015). This approach to causal inference
was recently illustrated by Zyphur et al. (2020a,b), showing the benefits of a general cross-lagged
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panel model (GCLM) specified as a structural equation model
(SEM) and estimated by maximum likelihood. However,
moving away from such frequentist estimators, time-series,
and panel data models can be extended to allow additional
flexibility in data and model structures, thereby enhancing
the range of applications and practical usefulness of models
such as the GCLM.

In the current article we do this by showing how Bayesian
estimation and inference can expand the range of available model
specifications because Bayesian approaches allow including
information from prior probabilities (i.e., priors) as well
as observed data when estimating parameters (for general
discussions see Gill, 2008; Gelman et al., 2014). Prior probabilities
can be specified in various ways when estimating panel
data models (e.g., Schuurman et al., 2016) including weakly
informative priors to improve the stability of estimates (keeping
them within more reasonable bounds; Lüdtke et al., 2018), but
here we illustrate the use of informative “small variance” or
“shrinkage” priors for parameters and/or parameter differences
using an approach that follows from existing work (see Muthén
and Asparouhov, 2012; Asparouhov et al., 2015; Zyphur and
Oswald, 2015). This approach to informative priors “shrinks”
parameter estimates toward zero or toward each other while
allowing estimates to deviate from these priors as a function
of observed data.

In this article we endeavor to show how, in the context of panel
data models, such priors have many benefits, helping to solve
the problem of “how to build models that are flexible enough to
be empirically relevant . . . but not so flexible as to be seriously
over-parameterized” (Koop and Korobilis, 2010, p. 269). In brief,
these priors allow many parameters to be estimated while at the
same time minimizing model complexity, shrinking parameter
estimates toward zero, and/or toward each other by inducing
a strong positive correlation among parameters (i.e., reducing
parameter differences; Korobilis, 2013). Two key benefits of this
prior specification and of Bayesian estimation and inference more
generally are as follows.

First, the priors increase generalizability by reducing variance
in a classic bias-variance trade-off, which is important for
practically applying results from panel data models by reducing
overfitting (Korobilis, 2013). Second, they allow estimating
models that are under-identified in frequentist approaches due
to limited T and/or N, such as when estimating time-varying unit
effects and multiple lagged effects (see Canova, 2007; Koop and
Korobilis, 2010; Canova and Ciccarelli, 2013; Giannone et al.,
2015). By using informative priors, under-identified parameters
need not be strictly constrained to zero or equality over time
as would be required with frequentist estimators, thus allowing
model results to be more sensitive to observed data patterns
when compared to models that constrain parameters to zero or
equality over time.

In what follows, we illustrate these benefits by first reviewing
the GCLM and its identification in SEM under frequentist
estimators. We then describe Bayesian estimation and inference,
focusing on the benefits of small-variance priors. Using Gallup
World Poll data from Diener et al. (2013) used in Zyphur et al.’s
articles, we then fit various models to illustrate the benefits of our

Bayesian approach. In so doing, we support different conclusions
than the original two articles on the GCLM, which revealed no
causal effects among income and subjective well-being (SWB).
With a Bayesian approach, we show a positive short-run and
long-run effect of income on SWB, but not the reverse. We
conclude with brief thoughts on panel data models, including the
importance of using them to study processes that are of serious
worldly concern. Before continuing we emphasize that our effort
here is to illustrate some of the logic and potential uses of prior
probabilities for time-series and panel data models, rather than
provide a comprehensive overview of priors in longitudinal data
models. Other work on priors, sensitivity analyses, and reporting
standards exists and we advise interested authors to further
explore these topics (e.g., Depaoli and van de Schoot, 2017; Smid
et al., 2020), including specifically in the domain of panel data
models similar to the GCLM (Lüdtke et al., 2018).

THE GENERAL CROSS-LAGGED PANEL
MODEL (GCLM)

The GCLM is specified for a unit i at an occasion t with
two variables xi,t and yi,t (for additional insight see Zyphur
et al., 2020a,b). Parenthetical superscripts (x) and (y) indicate
the equation in which a coefficient belongs; subscripts x and y
indicate the predictor with which a coefficient is associated; and
h indicates a lag or lead, such as yi,t−h. With this notation, the
general model is shown as follows (for t > 1):

xi,t = α
(x)
t + λ

(x)
t η

(x)
i + β

(x)
x1 xi,t−1 + δ

(x)
x1 u(x)

i,t−1 + β
(x)
y1 yi,t−1

+δ
(x)
y1 u(y)

i,t−1 + u(x)
i,t (1)

yi,t = α
(y)
t + λ

(y)
t η

(y)
i + β

(y)
y1 yi,t−1 + δ

(y)
y1 u(y)

i,t−1 + β
(y)
x1 xi,t−1

+δ
(y)
x1 u(x)

i,t−1 + u(y)
i,t (2)

wherein ui,t is an impulse capturing random events that are
meant to mimic random assignment to levels of a variable,
with variance ψut and contemporaneous covariance or “co-
movement”ψ(xy)

ut ; αtis an occasion effect at a time t; ηiis a unit
effect capturing stable factors over time, withη

(x)
i ∼ N(0, ψ

(x)
η ),

η
(y)
i ∼ N(0, ψ

(y)
η ), and covarianceψ(xy)

η ; λt is a time-varying unit
effect; β(x)

x1 and β
(y)
y1 are autoregressive (AR) effects of past impulses

on the same variable (with coefficients on lagged predictors
taking a form β

(y)
yh , wherein h is the lag); δ

(x)
x1 and δ

(y)
y1 are moving

average or MA effects of past impulses on the same variable; β
(x)
y1

and β
(y)
x1 are cross-lagged or CL effects of past impulses on another

variable; and δ
(x)
y1 and δ

(y)
x1 are cross-lagged moving average or

CLMA effects of past impulses among different variables1. With

1In order to identify a scale for η we fix one of each λ
(x)
t and λ

(y)
t terms to unity.

In our previous papers and in our online Excel file that automates Mplus input,
we did this for the final occasion λ6 = 1. Choosing this or any other occasion is
an arbitrary decision, but in the current paper we set λ1 = 1 in order to facilitate
some of the Bayesian prior specifications we describe.
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this logic, we interpret at least three kinds of effects: (1) total
effects of a variable on itself combine AR and MA terms to show
the short-run persistence of impulses [e.g., β(y)

y1 + δ
(y)
y1 ] such that a

process is more mean-reverting as these terms tend towards zero;
(2) Granger-causal effects of impulses that combine all CL and
CLMA terms to show short-run or direct effects among different
variables over time [e.g., β

(y)
x1 + δ

(y)
x1 ]; and (3) impulse responses

map the change in a system across all parameters due to an
impulse [e.g., a change along u(y)

i,t ], showing long-run or total
effects of an impulse across all variables in a system over time (see
Zyphur et al., 2020a).

We map this general model structure onto the following SEM:

yi = 3ηi (3)

ηi = α+ Bηi + ζi (4)

with all terms as follows for an AR(1)MA(1)CL(1)CLMA(1)
model and a single unit effect for each of k observed variables
at T occasions: yiis a kT length vector of observed variables; 3

is a kT × (2kT + k) matrix, mapping kT observed variables onto
kT latent analogs; ηi is a 2kT + k length vector, with kT terms
mapped to yi, kT impulses, and k unit effects; α is a 2kT + k
length vector with kT occasion effects only; B is a (2kT + k)×
(2kT + k) matrix with kT unities to map kT observed variables
to kT impulses, kT time-varying unit effects, 2k AR and MA
terms, and 2k(k− 1) CL and CLMA terms; and ζi is a 2kT +
k length vector with covariance matrix 9 containing k unit
effect variances, k(k− 1)/2 unit effect covariances, kT impulse
variances, and kT(k− 1)/2 co-movements.

As with time-series and panel data models in general, the
GCLM requires choosing different numbers of unit effects and
the following lag orders: p lags in an AR(p) model; q lags in an
MA(q) model; c lags in an CL(c) model; l lags in an CLMA(l)
model. Substantive and statistical checking should inform these
choices, with an emphasis on conservative models that balance
theory and contextual knowledge with model fit (Armstrong
et al., 2015; Green and Armstrong, 2015). In Zyphur et al.
(2020a) this was done by modeling income xi,t and SWB yi,t
for N = 135 countries and T = 6 years from 2006 to 2011 (see
Diener et al., 2013). After substantive and statistical checking,
an AR(1)MA(2)CL(1)CLMA(1) model was chosen for income
xi,t (adding a higher-order MA term δ

(x)
x2 u(x)

i,t−2 to Eq. 1), and
an AR(1)MA(1)CL(1)CLMA(1) model was chosen for SWB yi,t
(fitting with Eq. 2).

Descriptive statistics are in Zyphur et al. (2020a) and results
are in Table 1 as the maximum-likelihood or “ML” model these
authors estimated. Table 2 shows Granger causality tests from
the four steps discussed by these authors, with AIC and BIC
values showing that eliminating CL and CLMA effects improves
model fit (by decreasing AIC and BIC values, indicating better
model quality as a trade-off between fit and parsimony). This fails
to support any form of Granger causality using the logic from
Zyphur et al. (2020a). Finally, impulse responses in Figures 1A–D
show very weak support for long-run effects with CIs that include
zero, and an unexpected negative SWB → income effect. In
sum, these results are counter to those originally presented by

TABLE 1 | Model results.

Parameters Estimates (SEs or posterior SDs)

(Ranges for time-varying parameters)

ML Bayes 1 Bayes 2

SWB → SWB AR/MA Terms β
(y)
y1 and δ

(y)
y1

β
(y)
y1 0.39 (0.36) 0.34 (0.21)

[0.30, 0.39]
0.34 (0.21)
[0.29, 0.39]

δ
(y)
y1 0.19 (0.32) 0.15 (0.19)

[0.08, 0.22]
0.16 (0.19)
[0.08, 0.23]

β
(y)
y1 + δ

(y)
y1 0.58* (0.09) 0.49* (0.08)

[0.38, 0.62]
0.49* (0.08)
[0.38, 0.62]

Income → Income AR/MA terms β
(x)
x1 and δ

(x)
x1

β
(x)
x1 0.96* (0.13) 0.97* (0.03)

[0.94, 1.0]
0.97* (0.03)
[0.94, 1.0]

δ
(x)
x1 −0.33 (0.25) −0.27* (0.07)

[−0.30, −0.21]
−0.26* (0.07)
[0.30, −0.21]

δ
(x)
x2 0.06 (0.09) 0.02 (0.06)

[−0.03, 0.08]
0.01 (0.04)

[−0.07, 0.11]

δ
(x)
x. −0.27 (0.19) −0.25* (0.10)

[−0.32, −0.13]
−0.26* (0.08)

[−0.35, −0.10]

β
(x)
x1 + δ

(x)
x. 0.69* (0.20) 0.72* (0.08)

[0.62, 0.87]
0.72* (0.07)
[0.59, 0.90]

Income → Subjective well-being CL/CLMA terms β
(y)
x1 and δ

(y)
x1

β
(y)
x1 0.13 (0.32) 0.23 (0.20)

[0.19, 0.26]
0.24 (0.20)
[0.20, 0.26]

δ
(y)
x1 0.01 (0.25) −0.03 (0.19)

[−0.07, 0.01]
−0.03 (0.19)

[−0.08, 0.002]

β
(y)
x1 + δ

(y)
x1 0.14 (0.16) 0.22 (0.12)

[0.12, 0.25]
0.22 (0.12)
[0.12, 0.24]

Subjective well-being → Income CL/CLMA terms β
(x)
y1 and δ

(x)
y1

β
(x)
y1 −0.10 (0.07) 0.01 (0.03)

[−0.001, 0.03]
0.01 (0.02)

[−0.001, 0.03]

δ
(x)
y1 0.08 (0.07) −0.02 (0.05)

[−0.04, 0.01]
−0.02 (0.05)
[−0.04, 0.01]

β
(x)
y1 + δ

(x)
y1 −0.02 (0.04) −0.01 (0.05)

[−0.04, 0.01]
−0.01 (0.04)
[−0.04, 0.01]

Co-movement in impulses ψ
(xy)
ut

as correlations

ψ
(xy)
u1 0.64 (0.59) 0.87* (0.31) 0.87* (0.30)

ψ
(xy)
u2 0.45* (0.21) 0.44* (0.17) 0.44* (0.17)

ψ
(xy)
u3 0.003 (0.13) 0.05 (0.13) 0.05 (0.13)

ψ
(xy)
u4 −0.02 (0.12) 0.05 (0.13) 0.06 (0.13)

ψ
(xy)
u5 0.32* (0.14) 0.41* (0.11) 0.41* (0.11)

ψ
(xy)
u6 0.11 (0.13) 0.14 (0.11) 0.15 (0.11)

Unit effect variances ψ
(y)
η andψ

(x)
η , and covariance ψ

(xy)
η as a correlation

ψ
(y)
η 1.01 1.01 1.01

ψ
(x)
η 0.40 0.37 0.37

ψ
(xy)
η 0.96* (0.06) 0.86* (0.18) 0.86* (0.18)

Time-varying unit effects (“factor loadings”) λ
(y)
t and λ

(x)
t as correlations

λ
(y)
1 0.96* (0.06) 0.92* (0.10) 0.91* (0.10)

λ
(y)
2 0.48 (0.32) 0.47* (0.18) 0.47* (0.18)

λ
(y)
3 0.48 (0.32) 0.44* (0.17) 0.44* (0.17)

λ
(y)
4 0.46 (0.30) 0.51* (0.18) 0.51* (0.17)

λ
(y)
5 0.52 (0.30) 0.45* (0.17) 0.45* (0.17)

λ
(y)
6 0.46 (0.33) 0.44* (0.18) 0.45* (0.17)

λ
(x)
1 0.73* (0.25) 0.69* (0.19) 0.68* (0.19)

λ
(x)
2 −0.03 (0.22) −0.01 (0.06) −0.01 (0.06)

(Continued)
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TABLE 1 | Continued

Parameters Estimates (SEs or posterior SDs)

(Ranges for time-varying parameters)

ML Bayes 1 Bayes 2

λ
(x)
3 0.15 (0.09) −0.01 (0.05) −0.01 (0.05)

λ
(x)
4 0.16* (0.07) 0.02 (0.05) 0.02 (0.05)

λ
(x)
5 0.15* (0.08) 0.01 (0.06) 0.01 (0.06)

λ
(x)
6 0.16* (0.08) −0.01 (0.05) −0.01 (0.05)

Fit indices

k / pD 54 50.69 50.78

PPP – 0.32 0.32

DIC – 829.23 827.65

ML, maximum likelihood; SWB, subjective well-being; AR, autoregressive; MA,
moving average; CL, cross-lagged; CLMA, cross-lagged moving average; BIC,
Bayes information criterion; DIC, deviance information criterion; k / pD, the number
of model parameters, which is exactly k under ML and is estimated as pD
for Bayes models.
* p < 0.05.

Diener et al. (2013), who found a positive income→ SWB effect
as well as a positive SWBincome effect, which Zyphur et al.
(2020a) proposed was likely due to failing to control for unit
effects η

(x)
i and η

(y)
i (and their covariance ψ

(xy)
η ).

However, the model chosen by Zyphur et al., was limited
by their reliance on a frequentist estimator. Although these
estimators are common and inferences based on them may
be sound in many cases, estimators such as ML rely on only
observed data rather than also incorporating prior information
about parameters (van de Schoot et al., 2017). Specifically, time-
varying unit effects λtηi and AR/MA terms rely on kT(T −
1)/2 observed auto-covariances for estimation. On the other
hand, unit effect covariances ψ

(xy)
η , CL/CLMA terms, and

impulse co-movements ψ
(xy)
ut rely on k(k− 1)T2/2 observed

cross-covariances for estimation. In turn, for an SEM to be
identified the number of observed auto- and cross-covariances
(associated with T) must grow with the number of time-varying
unit effects λtηi and the p, q, c, and l lag orders for AR, MA,
CL, and CLMA terms (for a general discussion of identification

TABLE 2 | Granger Causality Tests and 1 R2.

ML Bayes 1 Bayes 2

AIC / BIC DIC DIC

Step 1: Derive fit of full model

845.94 / 1002.82 829.23 827.65

Step 2: Constraint all income→ SWB effects

841.86 / 990.03 835.48 833.85

Step 3: Constrain all SWB→ Income effects

844.08 / 992.25 820.83 818.71

Step 4: Constraining all CL/CLMA terms

842.62 / 984.98 833.35 831.70

ML, maximum-likelihood; SWB, subjective well-being; AIC, Akaike’s information
criterion; BIC, Bayes information criterion; DIC, Deviance information criterion.

see Bollen, 1989). Also, with many estimated parameters, the N
required to assure asymptotic assumptions are met for ML also
increases. Furthermore, even with large T and N, some models
may not be identified and may violate asymptotic assumptions,
such as if AR, MA, CL, and CLMA effects are time-varying, which
we can show by modifying Eqs. 1 and 2 with a t subscript as
follows (for t > 1):

xi,t = α
(x)
t + λ

(x)
t η

(x)
i + β

(x)
x1,txi,t−1 + δ

(x)
x1,tu

(x)
i,t−1 + β

(x)
y1,tyi,t−1

+δ
(x)
y1,tu

(y)
i,t−1 + u(x)

i,t (5)

yi,t = α
(y)
t + λ

(y)
t η

(y)
i + β

(y)
y1,tyi,t−1 + δ

(y)
y1,tu

(y)
i,t−1 + β

(y)
x1,txi,t−1

+δ
(y)
x1,tu

(x)
i,t−1 + u(y)

i,t (6)

This model allows for “regime changes” as changes in effects
over time (Stock and Watson, 1996, 2009), which is reasonable
given the fact that people, organizations, and entire economies
are complex dynamic systems that are always in flux (Williams
and Cook, 2016). However, Eqs. 5 and 6 imply that there are
now T − 1 unique parameters for each AR, MA, CL, and CLMA
term, and these proliferate rapidly as k increases, such that the
total number of time-varying AR, MA, CL, and CLMA effects
is (T − 1)[2k+ 2k(k− 1)]. For example, with k = 4 observed
variables and T = 10 occasions of measurement, Eqs. 5 and
6 imply a model with 288 β and δ terms, requiring large N.
Furthermore, this large number of terms is based on lag orders
that are limited to the simplest p = q = c = l = 1 case, which
will not always hold in practice and, when it does not, will put
substantial requirements on observed data and the estimates
derived from them.

Clearly, for GCLMs like that in Eqs. 5 and 6 and for panel data
models more generally, parameter identification and overfitting
as well as meeting ML assumptions may be difficult (Lüdtke
et al., 2018), especially as lag orders and the number of unit
effects grow. Due to this problem, parameter estimates—and
therefore Granger causality tests and impulse responses—may
have reduced generalizability and the number of parameters that
can be estimated are limited by N and T. This is unfortunate for
many reasons, such as difficulty in supporting hypotheses due to
moderate N. Also, ironically, the parameter restrictions required
to achieve model identification run counter to the impetus for
panel data models like ours, which is partly to overcome the
“incredible” identifying assumptions typically found in regression
models (see Sims, 1980, 1986). In order to provide a solution
to these problems, we now describe a Bayesian approach to
estimation and inference.

BAYESIAN ESTIMATION AND
INFERENCE

There are two key differences between Bayesian and frequentist
estimation. The first and perhaps primary difference is that
whereas frequentist probabilities apply to data (or events),
Bayesian probabilities apply to parameters (or hypotheses;
Zyphur and Oswald, 2015). The implication is that instead of
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FIGURE 1 | (A–D) Impulse Response Functions for AR(1)MA(2) Model Under Maximum-Likelihood. Impulses begin in 2007, showing the effect of a 1-unit impulse in
2007 over the next 4 years with 95% confident intervals.

representing relative frequencies, probabilities represent degrees
of belief or knowledge (Howson and Urbach, 2006). The classic
idea is that Bayesian probabilities are meant to be inductive,
allowing direct probabilistic inferences about parameters in a
model θ given observed data Y (Hacking, 2001; Jaynes, 2003).
With this orientation, Bayesian estimation and inference are
done in order to represent degrees of uncertainty around
parameters, measured by a “posterior” probability distribution
f (θ|Y). The mean, median, or mode of this distribution is used
to describe specific parameter point estimates and variance in
the distribution is used to describe uncertainty in parameters
for hypothesis testing. For example, the SD of a parameter
distribution can be used to approximate a frequentist SE for the
computation of Bayesian p-values (for discussion, see Muthén
and Asparouhov, 2012; Zyphur and Oswald, 2015). In all cases,
posterior distributions are meant to represent knowledge or
beliefs about parameters, with hypothesis tests serving to inform
knowledge or beliefs about parameters based on model results.

The second difference between frequentist and Bayesian
methods is how such results are derived, which is to say how
a posterior distribution f (θ|Y) is estimated. Unlike frequentist
estimation, Bayesian estimators must directly incorporate two
sources of information to estimate parameters in a model θ:
prior probabilities of parameters f (θ) that serve to indicate the
knowledge or beliefs about parameters before estimation; and
the probability of observed data Y given parameter estimates

f (Y|θ), which can be understood as a likelihood. The result is
posterior probabilities f (θ|Y), which are then used for inference.
The proportional relation (∝) among these terms can be shown
as follows (see Muthén and Asparouhov, 2012):

f (θ|Y) ∝ f (θ)f (Y|θ) (7)

wherein model results f (θ|Y) are derived based on both
information in the priors f (θ) and the data Y in the form of the
model likelihood f (Y|θ).

The result of this logic is that Bayesian estimators are justified
based on the degree to which they satisfy the rule in Eq. 7,
which is designed to be a logically consistent system for updating
prior knowledge or beliefs with additional data (Zyphur and
Oswald, 2015). This is very much unlike frequentist estimators,
which are justified based on asymptotic theories that describe
how estimators perform when, for example, a sample size grows
to infinity and/or a study is conducted an infinite number
of times. One result of this difference between Bayesian and
frequentist logics is that frequentist estimators like ML satisfy
assumptions only as N →∞, which creates problems for SEM
with many parameters and small N (Anderson and Gerbing,
1984; MacCallum et al., 1996). Conversely, because Bayesian
estimation requires only that the rule in Eq. 7 be followed,
models with many parameters and small N are not problematic
apart from the way that small N exacts an appropriate toll
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by increasing levels of uncertainty in f (θ|Y) (rather than also
violating assumptions about the estimator in relation to N; for
insight into the importance of priors in such cases see Smid et al.,
2020). The point is that as long as estimation follows the rule in
Eq. 7, then a sample size N is always appropriate even if it makes
reducing uncertainty in a posterior distribution f (θ |Y) difficult.

Given the focus on Eq. 7, a key question to answer for
a Bayesian approach is how to choose prior probabilities for
model parameters in f (θ). Typically, “uninformative” or “diffuse”
priors are used forf (θ) in an attempt to eliminate their influence
on posteriors f (θ|Y) (Gelman et al., 2014). The point of these
priors can be conceptualized as “flattening” probability (i.e.,
“leveling” belief or knowledge) across the range of possible
parameter values in θ. This is akin to being agnostic about
specific parameter values (i.e., having no strong prior knowledge
or beliefs), which is meant to result in reducing the influence
of priors f (θ) during estimation. In turn, such priors produce
strong agreement among Bayesian and frequentist estimates as N
increases, which is sensible because as priors’ influence decreases,
posteriors are increasingly dominated by the likelihood f (Y|θ)
that many frequentist methods maximize (the reader can see
this by conceptually by removing the prior from Eq. 7). In turn,
statistical modeling programs such as Mplus often use various
kinds of diffuse priors by default, such as a prior for a regression
slope with a variance that is, practically speaking, infinity, such
as β ∼ N(0, 1010) (Asparouhov and Muthén, 2010; Muthén,
2010). The reader can intuit how this prior is uninformative
by recognizing that the mean of the distribution 0 has virtually
no greater probability than a value of 100 for β, because β ∼

N(0, 1010) implies an extremely flat probability distribution
(i.e., approximately equal belief or knowledge for any specific
value of β).

Conversely, priors become informative and increasingly
influential as they become increasingly dense around specific
parameter values, such as a small-variance prior for a regression
slope β ∼ N(0, 0.01) (Muthén and Asparouhov, 2012; Zyphur
and Oswald, 2015). In this case, the density of the prior
distribution is high around the value 0, and during estimation
this pulls estimates of β toward 0 (Gill, 2008; Gelman et al.,
2014). Thus, informative priors that favor null parameter values
effectively “shrink” parameter estimates toward 0, which is useful
because this increases generalizability by reducing the tendency
to overfit model estimates to an observed dataset (McNeish,
2015). As Giannone et al. (2015) note, priors such as these “are
successful because they effectively reduce the estimation error
while generating only relatively small biases in the estimates of
the parameters” (p. 436). Of course it is notable that alternative
small-variance priors can be chosen—as we note further below
with references to relevant work that the reader may consult—our
choice of small-variance priors here follows from existing work
using these in the psychology and organizational literature (see
Muthén and Asparouhov, 2012; Zyphur and Oswald, 2015).

Furthermore, because Bayesian estimation relies on prior
probabilities f (θ) and the likelihood f (Y|θ), priors behave more
like observed data when they favor specific parameter values—
whatever these might be. By this we mean that in a model
with small-variance priors, parameters will be identified as a

function of the information in observed data and the priors,
so that even if there is insufficient information in a dataset to
identify a parameter, the small-variance prior may serve to help
identification. This can be understood by considering that as
priors f (θ) become more informative, this is akin to a reduction in
the number of parameters that are freely estimated in a Bayesian
model (symbolized as pD). In turn, a diffuse prior such as β ∼

N(0, 1010) offers little help in identifying estimates of β without
sufficient information in the likelihood f (Y|θ) to do so. On the
other hand, a small-variance prior such as β ∼ N(0, 0.01) may
allow estimating β even when there is insufficient information in
the model likelihood to do so (e.g., if a likelihood is relatively
“flat” across a range of values for β; Asparouhov et al., 2015).
This is because a model with a small-variance prior for the β

does not “freely” estimate it in a frequentist sense, but instead
combines the prior β ∼ N(0, 0.01) with the data Y in the form
of the likelihood f (Y|θ).

In sum, informative priors, such as small-variance priors, are
useful because they can shrink estimates to avoid overfitting,
thereby increasing generalizability, while at the same time helping
to identify parameters that otherwise may not be estimable due
to insufficient information in a dataset Y. Furthermore, these
priors can serve to operationalize prior knowledge or beliefs
about parameters, while allowing data to update the priors to
produce results that combine these two sources of information.
As previously noted, this is consistent with the interest of an
informal Bayesian who seeks to use panel data models to change
knowledge or beliefs about the ways in which variables are
causally related over time (Granger, 1980).

Priors for Time-Series and Panel Data
Models
Due to their ability to address overfitting and non-identified
parameters, informative priors have become popular in time-
series and panel data modeling, particularly in a vector
autoregressive or VAR framework (for discussions, see Canova,
2007; Koop and Korobilis, 2010; Giannone et al., 2015). To
illustrate this, the approach we use here relies on small-variance
priors for parameters as well as parameter differences for time-
varying terms. As examples, consider that higher-order lags
may be shrunk toward zero, such as a second-order MA effect:
δ
(y)
y2 ∼ N(0, 0.01); or, differences in time-varying parameters

may be shrunk toward each other, such as AR effects at
different occasions: (β

(x)
x1,t − β

(x)
x1,t+1) ∼ N(0, 0.01). Although the

former approach may be somewhat familiar (especially in the
econometric VAR community), the latter approach is more novel
and is designed for cases wherein similar parameters are expected
to have small differences. To understand priors such as (β

(x)
x1,t −

β
(x)
x1,t+1) ∼ N(0, 0.01), it may be useful to connect this to terms

associated with an SEM (e.g., Eqs. 3 and 4). Specifically, a prior
distribution for regression terms in a matrix B, or f (B), may
be parameterized as f (B) ∼ MVN(0, 9B), with the covariance
matrix 9B having diagonal elements that imply a diffuse prior
distribution (e.g., 1000) and off-diagonal elements that imply
large covariances among the parameters (e.g., 999.95). Taken
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together, the large on-diagonal values imply that, on average,
parameter values will be largely driven by the data Y, but
the large off-diagonal values operationalize a prior expectation
of very small parameter differences, thus shrinking parameters
toward each other during estimation (without also shrinking
them toward zero).

This approach with small-variance priors is a simplification of
others, such as state-space models with hierarchical priors (see
Koop and Korobilis, 2010; Korobilis, 2013). Although these other
methods can be approximated using our approach in various
ways (for insight see Chow et al., 2010), our goal is not to extend
these other methods but instead to provide an introduction
to using small-variance priors for panel data models in SEM
within a very user-friendly framework. For this our Mplus input
and output are available in Supplementary Material with the
required data from Zyphur et al.’s online materials so that the
reader can freely experiment with priors in GCLMs (notably
R users can convert our basic GCLM code into Lavaan using
the R program Mplus2lavaan, available here: https://rdrr.io/cran/
lavaan/man/mplus2lavaan.html).

The interested reader may also want to examine more
technical on the choice of small-variance priors after exploring
our article (e.g., Canova, 2007; Canova and Ciccarelli, 2013),
especially that which covers the level of prior informativeness in
the form of prior variances (e.g., Giannone et al., 2015). Related
work also exists in psychology showing that weakly informative
priors can help stabilize model parameters in models similar
to the GCLM (Lüdtke et al., 2018), which as we show offers
important insights that helps motivate some small-variance prior
specifications. For pedagogical purposes, we set prior variances
at 0.01 (i.e., a prior SD of 0.1) in order to express somewhat
strong prior expectations that parameters are close to the mean
and to be consistent with existing work on small-variance
priors (Muthén and Asparouhov, 2012; Zyphur and Oswald,
2015), but in practice researchers may use sensitivity analyses to
examine informativeness or they may use automated techniques
to determine prior variances (e.g., Giannone et al., 2015).

THE GCLM WITH SMALL-VARIANCE
PRIORS

In order to show how a Bayesian approach to estimation and
inference can benefit time-series and panel data models (or other
models), we now modify the GCLM presented previously and
we alter the way it has been estimated by using small-variance
priors. We begin with time-varying parameters that incorporate
small-variance priors for differences in parameter estimates over
time (sometimes called time-varying effects models or TVEMs)
and then we proceed to a more traditional form of small-variance
“Minnesota” prior for higher-order lags in panel data models—
named for the location of the central bank and economists who
pioneered the approach.

Time-Varying Parameters
Our general panel data model from Eqs. 1 and 2 can be usefully
extended by allowing time-varying AR, MA, CL, and CLMA

effects, which we show as follows (for t > 2):

xi,t = α
(x)
t + λ

(x)
t η

(x)
i + β

(x)
x1,txi,t−1 + δ

(x)
x1,tu

(x)
i,t−1 + δ

(x)
x2,tu

(x)
i,t−2

+β
(x)
y1,tyi,t−1 + δ

(x)
y1,tu

(y)
i,t−1 + u(x)

i,t (8)

yi,t = α
(y)
t + λ

(y)
t η

(y)
i + β

(y)
y1,tyi,t−1 + δ

(y)
y1,tu

(y)
i,t−1 + β

(y)
x1,txi,t−1

+δ
(y)
x1,tu

(x)
i,t−1 + u(y)

i,t (9)

wherein all terms are as described previously. This kind of
specification is important because researchers have found that
some of the greatest improvements in fit and prediction
come from allowing time-varying parameters (a type of non-
stationarity; Sims and Zha, 2006). However, in our case of k = 2
and T= 6, this model is not identified with a frequentist estimator
because of the many time-varying terms. For example, income
xi,t has 19 parameters that rely on only 15 auto-covariances
for estimation: five time-varying unit effects λt ; one unit effect
varianceψ(x)

η ψ
(x)
η ; five AR terms; and eight MA terms. Also, even

the SWB variable with only an MA(1) specification has 16 unique
parameters that rely on 15 auto-covariances, meaning the model
is under-identified for both x and y. Yet, even if the model
were identified, the abundance of parameters might overfit the
data, producing results that are not as generalizable—a problem
that frequentist estimators can produce in panel data models
like Eqs. 8 and 9. Furthermore, given our modest sample size
N = 135, estimating so many parameters calls into question
the asymptotic justification for ML in relation to the number of
parameters estimated.

In order to increase model parsimony and identify the model
while at the same time helping to address asymptotic concerns
related to the ML estimator used in Zyphur et al. (2020a), we take
a Bayesian approach with small-variance priors for differences in
AR, MA, CL, and CLMA terms, with priors as follows (for t > 1)
to allow differences in parameters over time by “shrinking” these
differences (i.e., by helping parameters remain similar over time):

AR effects for income : (β
(x)
x1,t − β

(x)
x1,t+1) ∼ N(0, 0.01)

MA effects (first− order) for income : (δ
(x)
x1,t − δ

(x)
x1,t+1) ∼

N(0, 0.01)

MA effects (second− order) for income : (δ
(x)
x2,t − δ

(x)
x2,t+1) ∼

N(0, 0.01)

CL effects for income : (β
(x)
y1,t − β

(x)
y1,t+1) ∼ N(0, 0.01)

CLMA effects for income : (δ
(x)
y1,t − δ

(x)
y1,t+1) ∼ N(0, 0.01)

AR effects for SWB : (β
(y)
y1,t − β

(y)
y1,t+1) ∼ N(0, 0.01)

MA effects for SWB : (δ
(y)
y1,t − δ

(y)
y1,t+1) ∼ N(0, 0.01)

CL effects for SWB : (β
(y)
x1,t − β

(y)
x1,t+1) ∼ N(0, 0.01)

CLMA effects for SWB : (δ
(y)
x1,t − δ

(y)
x1,t+1) ∼ N(0, 0.01)
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Where in all terms are as above and the expected differences
in each set of parameters are set to a small value. This prior
specification implies that the GCLM under ML is not nested
within this model with time-varying lagged effects—although
it still provides an interesting opportunity to compare results.
Specifically, with a mean of 0 and a variance of 0.01, these
normally distributed priors set a roughly 68% probability that
the parameters are within ++/−. One of each other over
time. This is akin to relatively strong prior beliefs that the
parameters are similar over time, which can be understood in
relation to a prior f (B) ∼ MVN(0, 9B), with the covariance
matrix 9B having large diagonal and off-diagonal elements—
implying diffuse priors while at the same time imposing an
expectation of similar parameter values over time. Conveniently,
observed data will test the veracity of this expectation by pulling
posteriors away from these priors if this is warranted by the data
(Muthén and Asparouhov, 2012).

To continue, we can increase model parsimony further by
setting small-variance priors for time-varying unit effects, which
we illustrate in two ways. First, recall that SWB is often highly
stable (see Easterlin, 1995, 2001; Diener and Lucas, 1999; Clark
et al., 2008). Indeed, in psychology, it is common to assume a
form of mean-stationarity for ηi by setting λt ≡ 1 (e.g., Hamaker
et al., 2015). This assumption of constant effects is so common
that it is the default for multilevel models and most fixed-effects
approaches (see Nezlek, 2012a,b; Allison, 2014; Hoffman, 2015).
Our results in Table 1 for the ML model support this, showing
similar effects for λ

(y)
t over T. Therefore, we set the following

small-variance priors to operationalize an expectation of mean-
stationarity for η

(y)
i (for t> 1): (λ(y)

t − λ
(y)
t+1) ∼ N(0, .01).

This kind of prior specification—operationalizing theory and
past findings—is in the spirit of Minnesota priors (see Koop and
Korobilis, 2010). In this tradition, econometricians often assume
small if any unit effects for variables like income (Canova and
Ciccarelli, 2013). Instead, trends are often treated as stochastic
rather than deterministic—as noted in Zyphur et al. (2020b)—
which is supported by results in Table 1 for the ML model,
showing weak time-varying effects λ

(x)
t . Conveniently, Bayesian

priors allow a model that incorporates time-varying unit effects
but simultaneously bets against them, so to speak. To put this
into practice, we use a prior that assumes no unit effects (for t > 1)
λ

(x)
t ∼ N(0, 0.01). This prior has multiple benefits: it shrinks unit

effects toward zero; it reduces the number of parameters that are
freely estimated; and it allows unit effects to manifest in posteriors
as a function of the observed data—in part by leaving income’s
unit effect variance ψ

(x)
η unrestricted2.

Furthermore, these prior specifications on the factor loadings
of the latent unit effects help to resolve a dilemma that other
researchers may experience when using a relatively small sample
(here N = 135) in the presence of modest unit effects variances
(for an overview and relevant simulations see Lüdtke et al., 2018).

2As a form of sensitivity analysis, we also estimated a model with a small-variance
prior for differences in income’s unit effects, setting (λ

(x)
t − λ

(x)
t+1) ∼ (0, 0.01) (for

t> 1). We observed no notable differences in model results with this set of priors
versus the prior (λ

(x)
t ) ∼ (0, 0.01).

Specifically, the default non-noninformative or diffuse priors in
Mplus can cause estimation problems with unit effect variances
and their factor loadings, which we encountered with variances
tending to zero and loadings that were incredibly large when
estimating the GCLM with a Bayes estimator and the default
priors in Mplus (we omit results but the reader can find them in
our online materials in the file “AR(1)MA(2) (Step 1, Full Model)
Bayes.out”). One solution to this problem is imposing a mean-
stability assumption by restricting the factor loadings to equality
over time (after the t = 1 occasion, which resolves the problem
with the parameter estimates as shown in the file “AR(1)MA(2)
(Step 1, Full Model) Bayes_mean stability.out”). However, the
small-variance priors we describe here allow avoiding the mean-
stability assumption while also stabilizing the variance and factor
loadings estimates.

In sum, the above combination of small-variance priors
minimizes model complexity due to time-varying parameters
while at the same time allowing the estimation of all parameters
even when they are not identified with frequentist estimators or
because of other estimation problems. Using a Bayes approach,
we estimate the model in Eqs. 8 and 9 with the above priors
using a Markov Chain Monte Carlo (MCMC) method with a
Gibbs sampler in Mplus. For this and other models that follow,
estimation is done with at least 10,000 iterations in two chains—
these were thinned by retaining every 50th estimate (for a total
of 500,000 iterations) to assure convergence within the 10,000
estimates and eliminate autocorrelation across the iterations.

Convergence is checked by examining the quality of chain
mixing with the estimated or potential scale reduction (PSR)
factor, with values of 1.05 or less typically used as a cut-off
(see Gill, 2008, pp. 478–482; Asparouhov and Muthén, 2010).
We also use Kolmogorov-Smirnov tests that compute p-values
for parameter differences between chains, testing convergence
for each parameter separately (while allowing for a Type-I
error rate of 0.05 across all p-values). Model fit is evaluated
by the posterior-predictive probability or p-value (PPP), which
indicates the relative fit of model-generated data versus observed
data, with values of 0.50 being optimal and values greater than
0.05 typically considered acceptable (Muthén and Asparouhov,
2012). Comparisons of models may be done using the deviance
information criterion (DIC) as a relative index of model quality
(balancing fit and parsimony), with smaller values indicating
a better model. The DIC is useful because it is uniquely
sensitive to the number of estimated parameters pD, which is
a function of the number of unrestricted parameters and the
amount of information provided by priors (see Asparouhov
et al., 2015), and thus this value will typically not be an
integer value as in the ML case where priors do not exist.
Consistent with other approaches, we use the SD of posterior
distributions to compute Bayesian analogs of two-tailed p-values
(Zyphur and Oswald, 2015). For impulse responses, we use 95%
credibility intervals with the highest posterior density, which are
similar to bootstrap CIs (Rubin, 1981). For all parameters not
explicitly mentioned, we use default uninformative/diffuse priors
in Mplus (Asparouhov and Muthén, 2010), which is done for
convenience and to keep the reader focused on the bespoke priors
specification used here.
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Model results are in Table 1 under the “Bayes 1” model,
showing acceptable fit (PPP = 0.32). For concision, we report
the averages and ranges of time-varying AR, MA, CL, and CLMA
terms (readers can examine full results in our online materials).
For example, AR effects for income have four terms associated
with each occasion of measurement that is endogenous to all
lagged effects, with β

(x)
x1,3 = 0.97, β

(x)
x1,4 = 0.97, β

(x)
x1,5 = 0.94, and

β
(x)
x1,6 = 1.0, for which Table 1 shows the mean 0.97, the range

[0.94, 1.0], and the average posterior SD = 0.03 (p < 0.001). As
Table 1 shows, averaged terms are similar to their frequentist
counterparts in many cases, such as the AR effect for the ML
model β(x)

x1 = 0.96 versus the Bayesian average 0.97. Furthermore,
ranges are relatively small for Bayesian estimates, indicating little
difference in most parameters over time under the combination
of small-variance priors and observed data used here.

However, a noticeable change occurs in the level of uncertainty
around parameters. For example, the AR effect for the ML model
has an SE = 0.13, whereas the Bayes average has an SD = 0.03.
This reduction in uncertainty is expected for two reasons. First,
allowing parameters to vary over time can increase their fit
to the data at each occasion, reducing uncertainty around the
estimates as a function of better fit to the covariance for any
two occasions. Second, as Table 1 shows, the total number of
parameters estimated in the Bayes model is slightly smaller than
the ML-based model (54 versus an estimated pD = 50.69 in the
Bayes model), ostensibly because of the small-variance priors.
In turn, although time-varying effects are allowed, the Bayes
model appears to be slightly more parsimonious, implying less
uncertainty for the entire model, which on average should result
in smaller Bayesian posterior SDs than ML-based SEs.

An interesting consequence of this uncertainty reduction is
that Granger-causality tests and impulse responses show different
results for the income→ SWB effect, supporting it much more
strongly. In the ML-based model, the income → SWB effect is
β

(y)
x1 + δ

(y)
x1 = 0.14, SE = 0.16, p = 0.40; whereas in the Bayes model

it becomes β
(y)
x1 + δ

(y)
x1 = 0.22, SD = 0.12, p = 0.06. However,

rather than relying on p-values, we test Granger-causality using
the DIC. As shown in Table 2, the DIC for the full model is
829.23, and eliminating the income→ SWB CL and CLMA terms
increases this to 835.48, indicating reduced model quality and
therefore supporting an income → SWB effect. Alternatively,
removing the SWB → income CL and CLMA terms, the DIC
falls to 820.83, indicating improved model quality and therefore
failing to support an SWB → income effect. Finally, testing
for income-SWB feedback by constraining all CL and CLMA
terms also reduces model quality with a DIC of 833.35, providing
support for feedback effects. Yet, this raises the question of
whether the income → SWB effect is driving the larger DIC
value when eliminating all CL and CLMA terms in order to
test for feedback.

To investigate this and to show long-run effects, we examined
impulse responses (see Figures 2A–D)3. The differences between
the ML-based and Bayesian impulse responses are notable, with

3Time-varying AR, MA, CL, and CLMA effects imply a unique impulse response
for each impulse over time. We calculate impulse responses based on the first

much less uncertainty around income’s persistence over time
(the top-right figure). Also, impulse responses show a larger
effect for income → SWB and much less uncertainty around
the estimate, with 95% credibility intervals encompassing zero
only at the margins (consistent with p = 0.06). Furthermore,
the SWB → income effect is approximately zero across all
periods. These findings lend more credibility to a positive long-
run income → SWB effect when compared to the frequentist
estimates in Figures 1A–D, and less credibility to a long-run
SWB→ income effect. The results also imply that the lower DIC
value when testing feedback is due to the income→ SWB effect
rather than the opposite, arguing against income-SWB feedback.

In sum, the small-variance priors we use allow model
specifications that are plausible yet under-identified with
frequentist methods. By allowing effects to vary over time,
we provide a better fit to the observed data and reduce the
uncertainty around estimates, pointing to an effect of income on
SWB that appears to be long-lasting. Indeed, when eliminating
the SWB→ income CL and CLMA effects, which is warranted
based on the decrease in the DIC, we show an income→ SWB
effect combining CL and CLMA terms: β

(y)
x1 + δ

(y)
x1 = 0.24 with

a posterior SD = 0.12, p = 0.04. Furthermore, this effect with
a one-tailed test has a p = 0.02 and the 95% credibility interval
in Figures 2A–D exclude zero. The implication is that a positive
impulse to national income may have a positive immediate and
long-run effect on SWB, neither of which was found in the
ML-based analyses in Tables 1, 2, and Figures 1A–D, because
of the restrictions on the effects that were required. For our
“informal Bayesian,” this implies updated knowledge or belief
about a causal income → SWB effect, which may be used to
inform policy decisions.

Reducing Lag Orders
To further tackle overparameterization and provide an additional
tool for estimating models that may be under-identified, small-
variance priors can be applied to high-order lags and unit effects.
As with time-varying parameters, the issue is that estimating
many lagged effects and time-varying unit effects can overfit
observed data while also making models under-identified with
frequentist estimators. This is important because, for prediction,
“[e]vidence favors Bayesian estimation of an equation with high-
order lags rather than restricted models arrived at by classical
testing methods” (Allen and Fildes, 2001, p. 335; Stock and
Watson, 2001).

To illustrate this approach while keeping our results both
concise and comparable to those presented thus far, we specify
the same models for both income and SWB (Eqs. 8 and 9), but set
small-variance priors on the second-order MA lag for income. In
Zyphur et al. (2020a) the authors appear compelled to choose a
single model for income, comparing the results of AR(1)MA(1),
AR(1)MA(2), AR(2)MA(1), and AR(2)MA(2) models for xi,t .
Conveniently, a Bayes estimator changes the nature of this choice
by allowing higher-order lags to have small-variance priors with
means of zero, reflecting an expectation of no higher-order lagged

available impulse given the model lag order MA(2). For discussion of impulse
responses for time-varying parameters and Bayesian estimators, see Koop (1996).
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FIGURE 2 | (A–D) Impulse Response Functions for AR(1)MA(2) Model With Bayesian Small-Priors. Impulse begin in 2007, showing the effect of a 1-unit impulse in
2007 over the next 4 years, with 95% credibility intervals (with the highest posterior density).

effects while allowing them to emerge as a function of the data.
The result is an ability to retain time-varying effects for AR, MA,
CL, and CLMA terms while also allowing them to have many lags
that minimally add to model complexity due to the use of small-
variance priors. To show this, we set the following small-variance
prior for the time-varying δ

(x)
x2,t term in Eq. 8: δ

(x)
x2,t ∼ N(0, 0.01).

This small-variance prior allows the second-order MA terms to
vary over time while shrinking them toward zero and keeping the
number of estimated parameters manageable.

The results of this model are shown in Table 1 under the
“Bayes 2” model, with Granger causality tests in Table 2. As
Table 1 shows, the fit of the model improves over the previous
“Bayes 1” model that allowed the second-order MA term δ

(x)
x2,t to

be unrestricted with a small-variance prior on differences with
(δ

(x)
x2,t − δ

(x)
x2,t+1) ∼ N(0, 0.01). Specifically, the DIC falls from

829.23 to 827.65, indicating some improvement by shrinking
second-order MA terms toward zero while still allowing them to
be time-varying.

Interestingly, this second Bayes model also fits the data better
than two others that may also seem warranted and of interest
to researches exploring different MA structures for income. The
first is a model wherein the same small-variance prior is applied
but the second-order MA term is constrained to equality over
time, with an effect δ

(x)
x2 as in the original ML model in Table 1

andδ
(x)
x2 ∼ (0, 0.01). The DIC for this model increases to 831.46,

arguing for the time-varying specification with the same null
small-variance prior δ

(x)
x2,t ∼ N(0, 0.01) in the Bayes 2 model in

Table 1. The second model that seems plausible is one that
takes the prior expectation of no effect as the actual model
specification, fixing the second-order MA term to zero (i.e., fixing
δ
(x)
x2,t ≡ 0), resulting in a purely MA(1) specification for income.

This model has a DIC that increases to 830.63, again favoring
the MA(2) specification with the small-variance null prior on
the second-order lagged MA effect δ

(x)
x2,t ∼ (0, 0.01). In sum, the

small-variance priors that allow time-varying effects outperform
other plausible specifications in this case, and allow researchers
to operationalize an expectation of no higher-order lagged effects
while still allowing results to be pulled away from this prior
expectation as a function of the data.

Given the improved fit of the second Bayes model in terms
of the DIC, it is interesting to note that, again, Granger-causality
tests under this model show an increase in the DIC when
removing the income→ SWB effect (see Table 2, Bayes 2 model),
with the full model DIC = 827.65, but with all income→ SWB
CL and CLMA terms eliminated the DIC increases to 833.85.
This is consistent with the overall income→ SWB effect, which
again is β

(y)
x1 + δ

(y)
x1 = 0.22, SD = 0.12, p = 0.06. Furthermore, as

before, constraining the SWB → income CL and CLMA terms
to zero improves model fit with DIC = 818.71, failing to support
Granger-causality in this direction. Also, feedback effects appear
to exist with DIC= 831.70 under a model with no CL and CLMA
terms, but this appears to be entirely due to the income→ SWB
effect, which is supported by impulse responses, which we omit
because they are very similar to Figures 2A–D.
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In sum, there are at least three benefits of the informative,
small-variance priors that we use here. First, they shrink estimates
toward zero or toward each other for time-varying parameters,
which in our model reduces uncertainty substantially and thereby
supports an income→ SWB effect that could not be supported
with an ML estimator. This is useful because, second, the increase
in model parsimony due to the model priors also increases
generalizability, which means the income→ SWB effect is also
more trustworthy than under ML. Third, the priors we use
allow estimation that would be impossible with a frequentist
estimator, allowing higher-order AR, MA, CL, and CLMA effects
while also using small-variance priors that reduce the need
to choose amongst models that have different lag orders for
these terms. These three benefits are in addition to those that
apply to Bayesian estimation more generally, including not only
its fit with an “informal Bayesian” using panel data models
to make inferences under uncertainty, but also computational
efficiencies of Bayesian estimation (see Chib, 2008; Muthén and
Asparouhov, 2012; Zyphur and Oswald, 2015). For more details,
the reader may consult additional work on Bayesian analysis
for panel data models (e.g., Sims, 1980, 1986; Canova, 2007;
Koop and Korobilis, 2010; Korobilis, 2013; Giannone et al., 2015;
Schuurman et al., 2016).

DISCUSSION

In their recent series “From Data to Causes,” Zyphur et al.
(2020a) described the GCLM parameters and their relationship
to Granger causality and intervention planning via impulse
responses, with all terms estimated via ML in an SEM framework.
These authors also compared their approach to others, noting
the benefits of dynamic models that make the future conditional
on the past while controlling for unit effects, thus addressing
issues with static approaches including latent curve models
(i.e., latent growth or trajectory models; Zyphur et al., 2020b).
However these authors did not acknowledge shortcomings of
their frequentist estimation method and thus in the current
article we extended the GCLM to the case of Bayesian estimation
and inference, showing the usefulness of small-variance priors
for both parameter estimates and parameter differences in
models that would otherwise have high dimensions that produce
generalizability and/or estimation problems. The result is that
here we were able to estimate time-varying parameters while
shrinking higher-order lagged effects and time-varying unit
effects for income toward zero, reducing parameter uncertainty
and allowing us to support an income→ SWB effect that does
not receive support under ML estimation.

With such Bayesian approaches to time-series and panel
data modeling, researchers have a set of powerful tools for
doing the practical work that defines the applied social sciences.
This work has various characteristics that often center on
theorizing and empirically studying causal effects, such as the
income → SWB effect, which we support in the current study.
For any applied science, the point of such a finding—and research
more generally—is a practical affair, with researchers seeking
to develop understandings of the world that can guide action,

such as organizational or public policy interventions (Cartwright
and Hardie, 2012). In turn, the point of these interventions is
to create specific kinds of outcomes, such as improving SWB
by helping poor nations to develop their economies in order
to increase income. To these ends, a benefit of small-variance
priors and methods of “shrinkage” more generally is to improve
generalizability so that such inferences can have a greater chance
of working in real-world situations.

However, there are various dangers associated with using
models such as ours uncritically. One danger is the well-
known problem of exactly how a researcher or policy maker
should derive priors—what sources of information should be
used for this purpose—and how the choice of different prior
specifications may affect results. These topics have received
substantial attention in Bayesian literature and we encourage the
interested reader to engage with this work (again the interested
reader may consult excellent work on these and other topics;
e.g., Depaoli and van de Schoot, 2017; Smid et al., 2020).
As we noted previously our use of the specific small-variance
prior of ∼N(0,0.01) was used for example purposes and to fit
with previous literature (see Muthén and Asparouhov, 2012;
Zyphur and Oswald, 2015). Future work may investigate other
potential types of small-variance priors to complement the
existing and ever-growing body of work on the use of priors
for Bayesian analysis of time-series and panel data models (e.g.,
Lüdtke et al., 2018).
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