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One of the primary goals of longitudinal modeling is to estimate and in-
terpret free model parameters that reflect meaningful aspects of change
over time in a parsimonious manner. Perhaps the simplest example is L0
estimate a linear slope in regression analysis when the predictor is time (f)
and the criterion (y) is measured repeatedly at séveral occasions; this slope
may be interpreted straightforwardly as the expected change in y given a
unit change in ¢in the population, holding constant all other predictors.
Of course, the nature of longitudinal change may be far from this simplest
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scenario, and as such researchers are increasingly seeking theoretically
appropriate ways to model more complex nonlinear systems as well (sce,
c.g., Grimm & Ram, 2009; Ram & Grimm, 2007).

In many circumstances, a given linear or nonlinear model may be sen-
sible from a theorelical perspective and may fit the data well, vet may have
parameters that are diflicult to interpret in a meaningful way. Such models
often may be reparameterized. Reparameterization is the reexpression of a
target model so that parameters of the reexpressed model more closely
align with questions of substantive interest to the researcher. In this chap-
ter we discuss various ways in which reparameterization may be used in the
context of latent growth curve modeling (LGM), a powerful and flexible
application of structural equation modeling (SEM) often used to model
wrends in longiwdinal data and individual differences in those trends.

As is seen in this chapter, reparameterization can be extremely useful to
researchers for several reasons. First and foremost, it is often more conve-
nicnt to directly estimate some quantity of interest as a model parameter
than it is to compute it post hoc as a function of other estimated param-
ceters. Direct estimation of these parameters permits researchers to obtain
both point and interval estimates of the quantity of interest, allowing the
researcher to test hypotheses and determine precision of estimation. Re-
parameterization also allows researchers to determine whether an aspect
ol change or some other important quantity is predicted or moderated by
other variables, and generally allows the flexibility of treating a parameter
as a fixed known value, as an unknown value to be estimated, or even (in
some cases) as a random coefficient reflecting individual differences in
some aspect of the [unction.

To provide a framework for our discussion, we describe three illustrative
(but by no means exhaustive) classes of reparameterization, and present
exemplars from each class: (1) quantifying homogeneity or heterogeneity
of individuals, (2) estimating and predicting aspects of change, and (3) esti-
mating and predicting time-specific individual differences. To illustrate the
quantification of homogeneity or heterogeneity, we use the context of ado-
lescents” delinquent peer associations to discuss how a linear growth curve
model may be reparameterized so that the aperture (the point in time asso-
ciated with the least variable individual differences) is directly estimated as a
modlel parameter. As an example of estimation and prediction of aspects of
change, we demonstrate the estimation of individually varying surge points
and surge slopes (Choi, Harring, & Hancock, 2009) in elementary school
children’s mathematics scores, and show how gender can be used as a per-
son-level predictor of these random effects. To illustrate the estimation and
prediction of time=specific individual differences, we show how to reparam-
eterize a nonlinear function of infant growth so that individual differences
can be operationalized as a random effect and predicted by maternal breast-
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feeding behavior. Clearly, individual differences are central to each of these
exemplars, as they often are in models of change over time. In each case,
the target of reparameterization will become an estimated parameter or a
random effect reflecting individual differences in the target aspect.

This chapter thus serves as an introduction to the general concept of
reparameterization. It is our intention and hope that readers will gain an
understanding of reparameterization that will allow them to generalize the
procedure to new contexts. In the next section, we discuss the concept of
reparameterization as a general tool that can be used in the context of
modeling longitudinal data. Then we elaborate on our empirical examples
as exemplars reflecting the three broad classes of reparameterization. At
the end, we suggest other potential reparameterization classes as well.

REPARAMETERIZATION

As indicated earlier, reparameterization is the reexpression of a target
model so that parameters of the reexpressed model more closely align with
questions of substantive interest to the researcher. The use of reparameter-
ization assumes that the researcher has first identified an appropriate target
function to represent growth or change over time, and that the researcher
wishes to quantify some aspect of the function (e.g., a point in time, an
aspect of change, or a prediction coefficient) not already represented in
the standard parameterization of the function. A reparameterized model
should have the same number of estimated (free) parameters, and ideally
will be statistically equivalent to the original model (although sometimes
reparameterization will involve approximation).

In the methodological literature there is a history of reparameterizing
conventional models to aid in addressing specific substantive questions. For
example, using SEM, Choi et al. (2009) reparameterized a logistic model
of change to estimate lower and upper asymptotes, surge points, and jerk
points. The latter two parameters represent points in time corresponding
to key points of change in the logistic trend. Cudeck and du Toit (2002)
reparameterized the common and familiar quadratic curve to estimate the
intercept, the time at which the curve attains its maximum,/minimum, and
the predicted value at that point in time, using single- and multilevel regres-
sion modeling. Using multilevel modeling, Rausch (2004, 2008) reparam-
eterized the negative exponential curve to estimate a “half-life” parameter,
which represents the amount of time that must elapse for the mean trend
to reach a point halfway between the current point and the upper asymp-
tote. Finally, Harring, Cudeck, and du Toit (2006) reparameterized two-seg-
ment linear spline models so that the knot (or transition point) is estimated
directly as a parameter. In each of these examples, the objective of reparam-
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elerization is (o recast some aspect of change as cither a model parameter
or as a random clfect that varies and covaries across sampled cases.

Despite the evident potential and uselulness of reparameterization, it is
rarely applied outside the methodological literatire. We can speculate about
why this strategy has failed 10 cawch on among social scientists. First, reparam-
eterization typically has been demonstrated in the context of a single fune-
tional form in isolation. It may not be clear 1o potential users how essentially
the same procedure could be adapted 1o a variety ol [unctional forms. Second,
when reparameterization has appeared in prior literaiure, it ivpically has not
been the primary focus of the study, but rather a tool used 1o achieve a specilic
end (e.g., enhancing the probability of successful convergence or isalating
a scientifically interesting aspect of the funciional form). Third, there have
been too few linkages with applied topics to motivate substantive rescarchers
10 make the extra effort to use unconventional model specilications.

Clearly, there is a need for a general explanatory framework for repa-
rameterizing models, the goals and outcome of which are closely tied 1o
substantive questions. Below we describe a general approach for obraining
interpretable reparameterizations using LGM. In broad strokes, this gen-
cral approach involves the following four steps:

1. Reparameterizing the target function to contain substantively impor-
tant parameters or random coefficients.

2. Linearizing the target function to render it specifiable in SEM soft-
wadre.

3. Specifying the model using the structured latent curve approach.

4. Estimating model parameters (point and interval estimates).
We begin by describing this framework conceptually, and then in the

next section illustrate the details in the context of the exemplars of our

three classes of reparameterization. Throughout, we highlight the general-

ity of the approach and the new substantively relevant information that can

be obtained by using it

1. Reparameterizing the Target Function

Reparameterization begins with a model expression. The researcher
needs to decide what aspect of that mode! could benefit rom explicit
quantification. If the aspect of interest is already represented in the model
(e.g., slope mean, intercept variance), then there is no need o reparames
eterize the model. Assuming the desired aspect is not already in the model
as a parameter or random eflect, the rescarcher must determine how it

could be expressed in terms of existing model parameters. An expression
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is derived, olten using simple calculus, for that aspect ol change n ¥cx.ms

p— o - o o pareallea 1 e = 2 \is o
of existing parameters; the result is then solved back in terms of an existing
parameter and substituted into the original model expression. The result is
the reparameterized model.

2. Linearizing the Target Function

In many cases, reparamcteriza[ion will result in an i11[1‘i11siFally n‘oniix?ear
function, in the sense that no wransformation will render a lmea.r h'mcno.n_
For example, some parameters may enger the model cml).ed(led WlFll}ll 1‘@1{)-
rocals, radicals, Lrigonometric terms, exponents, or logarithms. This 11?tr11151c
nonlinearity poses a practical problem in latent growth curve modeling be-
cause SEM is a fundamentally lincar framework. Hence, thci 1‘c§?a1‘cl1§1‘ may
need to “linearize” the funcuon to enable fitting the moc_icl in :SI:M soltwvare.

To linearize the target [unction, we approxim'fue itwith a 111"5L—.01‘dcr‘Tay-
lor series expansion, which can be described sunp!y as consisting o.l thé
target function itself (evaluated at the parameter csumat'cs) plus thgﬁ 11}]6111
sum of coeflicients (c.g., intercepts, slopes, asymptotes) in the t‘fu‘gcl [unc-
tion times partial first derivatives of the target function taken wul.1 respect
to each coefficient. Taylor series linearization has long been used . ﬁftmg
nonlinear regression and nonlinear mixed models (eq, Beal & Sheiner,
1982; Davidian & Giltinan, 1995; Hand & Crowder, 1996).

3. Specifying the Model

As a third step, we employ the principles of _slrm'[ure([ latent curve mlod—
eling (SLCM) (Browne, 1993; Browne & du TOI.[, 1991) to %‘ezu'range the
linearized function in a way that makes it possible to specxf).f Lhe_model
using SEM. SLCM involves treating the partial derivatives obtained in S[epl
2 as factor loadings. New parameters that conceptually refle.ct person-leve
(level-2) characteristics can be treated as fixed values or es.umaled param-v
eters. New within-person (level-1) aspects of a reparameterized Il]Odfil.llel}
be treated as fixed values, esimated parameters, or random coefficients
that vary from person to person. In fact, nearly any aspect of growth can be
treated as a random coefficient in this framework.

4. Estimating Model Parameters

i : e = i usine SEV softovare canable of

Once the model is specified, it can be fit using SEM software capak N

i i i - constraints.' Itis i  thy : framework
imposing nonlinear constraints.' Itis important to note that the fre
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described here accommodates missing data that are missing at random,
and can be wodified 10 accommodate individually varying occasions of
measurement. Both capabilities are made possible by the use of full-infor-
mation maximum likelihood (FIML) estimation.

EXEMPLARY APPLICATIONS

Thus far, we have covered in conceptual terms four steps that can be taken
to proceed from a conventionally parameterized latent growth model to a re-
paramecterized model with parameters serving specific interpretive purposes.
Now that the groundwork has been laid, we present concrete details in the
context of the exemplars in our three illustrative classes of reparametetization.

Quantifying Homogeneity or Heterogeneity
of Individuals

Our first exemplar is of the broader class of reparameterizations of lon-
gitudinal models that quantify homogeneity or heterogeneity of individu-
als. Clinicians and education researchers are often interested in tracking
the degree of children’s affiliation with delinquent peers. In particular, re-
searchers may wish to locate the point in time when children are the most
similar o each other in their degree of affiliation with delinquent peers,
before their trajectories begin to diverge from one another., Locating this
point may help clinicians properly time interventions to delay or prevent
negative behaviors that tend to spread through peer associations, such as
drug use, truancy, and juvenile crime.

More generally, the point in time at which individuals demonstrate the
greatest similarity is termed the aperture (Hancock & Choi, 2006). The ap-
erture has previously been discussed by Rogosa and Willett (1985) (who
called it the centering point) and by Mehta and West (2000). The aperture
may be directly estimated in a number of ways. We use a method based on
the four steps described in the preceding section. To illustrate the method,
we make use of peer affiliation data reported by Stoolmiller (1994) and
subscquently analyzed by Hancock and Choi (2006).

First, we parameterize the linear latent growth model (with random in-
tercepts and slopes) such that the point in time corresponding to the mini-
mum model-implied variance is represented as a parameter in the model.
Note that there is only one such point in time in a linear trajectory model,
and it characterizes the entire sample, so it cannot be treated as a random
ellect that varies across people. We begin with a model expression for an
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unconditional latent growth model, which may be expressed in an equation
for the outcome y at time 7 [or individual j:

)'r/:nI/"'nij([ij—t*)"'eij- (2.1)

In equation 2.1, Y, is delinquent peer association (a measm:e of a_ggregated
child, parent, and teacher responses); ¢, is the value of .u¥ne (in tlns.ez\—
ample, grade in school); * is the time chosen as the origin (zero point)
4 ) b ) ) ) )
of the time variable [or all subjects, 1, and n,, are the lalul'trm(tic.lcq?t and
i asion-specific disturbance
slope, respectively, for subject j; and €, is dl} occasion-specific isturbance
term, here assumed to have homoscedastic® variance over time and to be
B
. . " 2 > Imea TOWI ~tOIS
uncorrelated across occasions, with €~ N(0,07). The latent growth factors
are assumed to be jointly normally distributed:

Nij ~ MVN 3 , Wi _ o)
Ny, Ho Wy Yo

e level-S . 1o

Thus, there are six parameters (two factor means, threc level-2 (co)vari
’ - . . .
ances, and a level-1 disturbance vartance). The model is depicted graphi-

cally in Figure 2.1.

U U2
W11 Y22

1 Tty-

i i -owth curve :J lor five repeate SASUTCS.
Figure 2.1 A lincar latent growth curve model for five repeated imeasy
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In this example we would like to estimate the aperture—the value of t,
at which children are the most similar 10 one another in terms of atfiliation
with delinquent peers—as a model parameler. The aperture occurs where
the model-implied variance of ¥, is the smallest, a characteristic upon which
we can capitalize. The first step, then, is to express the model-implied vari-
ance of y, in terms of existing model parameters. That variance is:

(5}-’,=\'a1-[n,,+n2j(/,,—t*)+s,,} (

e
o
=

= Var(m ; )+ Q(tf, -t *)cov(m,,ng,)+(t,l ol ”)_) var(r]g) )+ var(a,,,-)
=y +2(t, =y +(y —r*)2 Yos + G2

To find the temporal reference point of {;at which the time variable would
have to be centered in order to achieve minimum variance (i.e., t%), we
apply elementary calculus, setting the first partial derivative of equation 2.3
with respect to centered time (¢, - ¢*) equal to zero:

9G; :
9% oy +9(t — 1)y (2.4)
My 2o +2(1; — %)Yy
0=\y._,l+(r,{,—t*--)qf22
ft,;n,,]:—%.

The quantity 1, is the aperture. Notice also that if we center at N, Yy =0
This permits us to reexpress the model equivalently as:

Y =T, +n2j(t{j_nn)+8ijy 8,]'~N(0,0§) (2.5)
where
My, i Vi
My, |~MVNI W | 0wy i (2.6)
r-]II ull O 0 '-]

The reparameterized model in equations 2.5 and 2.6 still has six param-
eters; we have simply sacrificed the estimation of y,, (which we know to
be zero at the aperwure; see equation 2.4) for the ability to estimate the
aperture, parameterized as the mean of a latent variable with zero variance.
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The second step is to linearize the model in equations 2.5 and 2.6 in or-
der to make it possible to specify the model in SEM software. The model is
already in linear form, so no linearization is technically necessary here, but
we apply linearization anyway to illustrate the method in a simple context.
A firscorder Taylor series approximation is given by the function:

Jy
P+ Xg ) (27)

Wiy,
where |, is the target function evaluated at the parameters,

dy |
ony, uy

is the first partial derivative of the reparameterized model with respect to the
pth coeffictent evaluated at the coefficient means, and (0, — u/,) is the pth
mean-centered growth coefficient. In the reparameterized model there are
three coefficients (1, , Ny, and 1), and the required partial derivatives evalu-
ated at the coefficient means are, respectively, 1, (t,.j— u,), and -, Although
it may not be immediately obvious, this linearized form adheres to the stan-
dard expression of the confirmatory factor model, where 3|, = A,

dy
za—)(% —H,)= ANy,
P T]/!I Wy

and n; is a vector of mean-centered latent variables. The loadings in A are the
derivatives evaluated at each occasion of measurement:

[ ; i -‘
1 : (O'Iln) H —Hy
A= 1 i (I—I.l,,) 1! —He ) (28)
= ! !
| |
I |
L 1 i [T—HHJ :; _u‘_’

The reparameterized model is depicted in Figure 2.2 in a somewhat simpli-
fied form.”

Three aspects of change (intercept, linear slope, and aperture) are rep-
resented as factors in the reparameterized model. The intercept and slope
are represented as random coeflicients that do not covary, whereas the ap-
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1 : ti—u, II ! —112.-_;

PTTT T

& €2 &3 &
Figure 2.2 A reparameterized lincar laient growth curve model for five repeated
measures, with the aperture parameterized as u,

erture is represented as a fixed coeflicient (a latent variable with zero vari-
ance) because it cannot vary across individuals.

Applying this reparameterized model to Stoolmiller’s (1994) data, we
find that the model fits well (x2=1.725, £=.988; RMSEA =.000, 90%
CI = [.000,.000], NNFI = 1.277)" and yields the following parameter est-
mates (and standard errors):

Ly 4048 (489) || 5819 (1.168)
Ny, [~MVN|| 0229 (.067) |. 0 290 (.098) (2.9)
N, 3.668 (.926) 0 0 ¢]

A 5 -

and 62 = 5.117(.865). The aperture is estimated to occur at £, = 3.668; thal
is, according o the model, children are most similar in their affiliation
with delinquent peers approximately % of the way through the third grade.
Therefore, third grade might be a good opportunity to implement inter-
ventions designed to inoculate children against peer influence and pre-
vent them from engaging in negative behaviors that are spread through
pecr associations. LISREL syntax is provided at hup://quan tpsv.org/pubs/
preacher_hancock_2012_code.pdt.
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This may seem like a rather involved procedure [or estimating just one ad-
ditional parameter. We agree. and certainly there are casier wavs to estimate
the aperture parameter. We merely used the aperture to illusurate a general
procedure that can be used in much more complex settings, as we illustrate
next. One acdvantage of using the specilic approach to reparameterization we
described in steps 1—4 above in the case ol aperwres is that the procedure not
only yields a point estimate and an intevval estmate, but also treats the aper-
rure as @ variable in the model (n,). Representing the aperture as a variable
allows the researcher to test moderation hypotheses; for example. we can test
whether the timing of greatest similarity differs b.em'ccn bovs and girls, or as
a functon of social network size or sOCIOECONOMIC Status.

Estimation and Prediction of Aspects of Change

Our second example is also drawn from the field of education. We make use
of the Early Childhood Longitudinal Study. Kindergarten Class of 1998-1999
(ECLSK) data (Tourangeau, Nord, L&, Sorongon, & Najarian, 2009). The
ECLSK data span kindergarten through the eighth grade. The limited dataset
we use includes data on math, reading, and gender. Here we focus on model-
ing the nonlinear trend in math skills assessed in the fall and spring of kin-
dergarten, fall and spring of first grade, and spring of third, fitth, and eighth

- . ; . = i

grades. A random subset of 250 children’s scores are depicted in Figure 2.3.

220
200 -
180 -
160 -
140 1
120 1
100 -
80 1 //
60 1 4
40 1 |
20 -
0

Math

§'S
S8

—
—_— ‘C‘J
o w» w

Grade

oo
[ &)

Figure 2.3 A random sample ol 250 children’s observed mathematics score irajee-
tories from the LCLS-K data.
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An appropriate model for learning data such as those in ECLS-K might be
the sigmoicdal Gompertz curve, which increases slowly from a lower asymp-
ote to a region of relatively faster change, followed by a gradual approach to
an upper asymptote. Unlike logistic [unctdons, Gompertz curves need not be
symmetric about their points ol infllection—a potentially realistic reflection
of actual learning rates. There are several versions of the Gompertz curve,
some with three parameters (e.g., Browne, 1993; Gompertz, 1825; Sit & Pou-
lin-Costello, 1994; Winsor, 1932) and some with [our (e.g., Grimm, Ram, &
Estabrook, 2010). We begin with a parameterization of the Gompertz curve
presented by Sit and Poulin-Costello (1994), with all coefficients random:

¥ =1, exp(—exp(ny, — s by )]+ €5 (2.10)

where 1, is the upper asvinptote, 0, con trols the shape of the curve, and Ny,
shifts the curve horizontally.

Ol the three parameters in the expression in equation 2.10, only i, may
be of interest to education researchers. However, the curve is governed by
two other parameters that are rather more difficult to treat substantively.
Thus, we wish to reparameterize the function to replace Ny and Ny with
more interesting parameters: the swge point (the point in time at which the
maximum rate of change occurs; Choi et al., 2009) and the surge slope (the
slope, or instantaneous rate of change, at that point). These parameters
may be of greater interest to resecarchers; treating the surge point as a ran-
dom coefficient would enable educators to determine what environmental
factors moderate the surge point, and what individual differences predict
children’s different rates of learning at that point.

We begin with the target function in equation 2.10. In this example,
we allow heteroscedastic error variances over time. The first step is to
reparameterize the target function to contain the three desired aspects
ol change (upper asymptote, surge point, and surge slope) as either esti-
mated parameters or random coethicients. For full generality, we choose
to treat all three as random coefficients. The target function and its first
and sccond derivatives are:

v, = exp(=exp(ny, =/t ) (2.11)
dy,
5’% =M M, exp(Ne, = Nty )Cxp(—cxp(ng,» — sty ))
3
ag."i/ 2
T =N, CXP(‘]:’/ =Nl )CXP(—CXP(W_’,‘ =Ms3,4 ))
2

1 /n;—"'/ (exl)(n‘-’r =Ny ly ))l CXP(‘CXP(WI =Ny ))
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The surge point is deflined to occur where

7y,
L =0.
ot;
Setting the second derivative Lo zero and solving lor ik vields the new surge
point random coeflicient I
le,

ty, ==L (2.12)
R

Al this point iLis possible 1o express either n,orn, in terms of t(”., vielding:

/

Mo, =N,
(2.13)
Naj =N, /o) -
We could replace either ny; or 1, leading o
Y= ]’]”CXP(—CXP(I(]/T];?,I _T];zjl,'/)) (2.14)
=1y, CXP(—CXP(U:L, (ln, —’u,‘)))
or
. . . LIEY 9215
Yii = Ny €XP| —eXP| My _f_’f/ (2.15)
0]
'
:T]|/CXP —CXP n‘-’l -
[0/

We chose equation 2.14 because its parameters are potentially of greater in-
terest and are more easily interpretable; it has the additional benefit that it
does not involve division by by thus avoiding potential problems of dividing
by zero or by very small numbers. The reparameterized function is:

Y ="My cxp(—cxp(ng, (l(,, =it ))), (2.16)

where 1 and 1, are defined as before, and ¢, is the surge point.

We also want the surge slope as a coeflicient in the model. This slope is
the first derivative (local linear slope) at the surge point (Choi ctal., 2009).
We obtin the first derivative using the new parameterization to avoid rein-
troducing 1, into the model. The target function and its first derivative are:
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Yo =Ty C‘\'P(_CXP(T]:%/ (lo, —tly ))) (2.17)

\.I
T/ =My, Ny, CXP(U:&, (ﬁ(), —l;,»))exP(—exP(ﬂ:a, (fu/ —t, )))
a
At the surge point ¢, (4, - ¢;) =0, yvielding the new surge slope random
coeflicient s, ;
S, :nljrls’», eXp(_l)' (218)

Reexpressing 1, in terms of the surge slope, we obtain:

Suj =T, My, exp(-1) (2.19)
- s(,je
)~
n,

where e = exp (1), or Euler’s number. Replacing n,, in equation 2.17 yields:

¥j =T exp| —exp ?}’—’e(n., —t,) (2.20)

L

where 1, and ¢ are defined as before, and 5,;1s the surge slope.

The second step is to linearize the reparameterized model to express it
in a form more palatable to SEM software. The first partial derivatives of
equation 2.20 with i‘espect tom =1, ¢, s,,]" and evaluated at the coefficient
means L = [, ¢, 5,1" are:

exp exp n
».,‘,-(m—f.,chp M exp| —exp M
+ ' uf
" ! 2.21
E)n— (2.1
—sucexp soelto = ty) o sue(ty=1,)
nl T

~e{ta—1, )exp(s‘,e(r(, L )exp(— exp(s(.e(t(. L ))
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We use these derivatives as factor loadings, substituting values of t‘) where
appropriate. The linearized model can then be expressed in matrix form as:

¥, = AU+ AN, +g,, (2.22)

where A, the loading matrix multiplied by the factor means, represents
the target model evaluated at the parameter estimates, and AT represents
the deviation of individual ;s trajectory from the mean implied by Ap. The
vector g, contains occasion-specific residuals for individual ;.

In the third step, we make use of SLCM to specify the model in equation
9.22. This involves treating the derivatives in equation 2.21 as factor load-
ings using software capable of imposing nonlinear constraints. In SLCM,
parameters that enter the reparameterized target function linearly have
corresponding factor means estimated in [, whereas those that enter the
function nonlinearly have corresponding factor means constrained to zero.
As the ambitious reader may derive, | ;and s, enter the reparameterized tar-
get function linearly, whereas ¢, enters nonlinearly because the first partial
derivative of the function with respect to ¢, contains {,; thus, p = [n, 0 5]".
This step is taken so that Ap will equal the desired mean trajectory at the pa-
rameter estimates.” The model is depicted graphically in Figure 2.4, Panel
A. Symbols for elements of the random coefficient covariance matrix are
omitted from the figure for simplicity, but can be represented as:

Wf]l
\P = WI.‘I.T]. Whu - (2'23)
Wxn.m ‘V.v(..r.. \u\'(-

This unconditional model does not consider gender as a covariate (we
include gender next). Fitting the model to data yields:

407.249 (9.018)

N, [ 145.775(.932)
lo; |~MVN DO0(N/A) [ —3.069 (147) 950 (006) (2.24)
sy 22.601(,056)

93120 (1.772)  —2.007 (047)  37.868 (563)

with the variance of g, increasing from 12.165 to a maximum of 87.257 in
the spring of first grade, and decreasing to 61.129 by the spring of eighth
grade. The estimated mean surge point was & =1.303 (.005), with corre-
sponding surge slope s, = 22.601 (.056).

The goal of this example was not only to show how parameters such as the
surge point and surge slope may be treated as random coefficients within
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the SEM/LGM framework, butalso to predict individual differences in these
coethicients using gender as a level-2 predictor. The structural equation for

the random coefhicients m, in the conditional model may be written as:
n,=u+Ix, +(,, (2.25)
where T contains structural coeflicients linking growth factors o exoge-

nous measured variables in x,. Regressing the growth lactors on gender

(boy = 0, girl = 1) yields the following results:

a1 146,447 (308) 413,179 (8.886)
ni |
| S
f |~ MVN 000(N/A) || —3.052 (.137) 298 (L006) | (2‘_)_[))
) J
23 93R(07Y) 96,052 (1L806)  -1.8%% (047) BIR3K (H7D)

—1.454 (.408)

[N
[N\o]
~J
~—

043 (.008) | (

)
I

~1.339(.106)
L |

Because boys were coded 0 and girls were coded 1, the means in equation
2.26 reflect model-implied values of the growth coefficients for boys. Thus,
the mean surge point for boys was l.(, = 1.282(.007), with corresponding surge
slope $o = 23.238(.079). Based on equation 2.27, being a girl is associated
with a slightly lower value of the upper asymptote (i.e., 146.447 — 1.454 =
144.993), a significantly later surge point (i.e., 1.282 +.043 = 1.323), and a
significanty lower surge slope (i.e., 23.238 — 1.339 = 21.899) than for boys.
Mplus syntax for both the unconditional and conditional models is provided
at htep:/ /quantpsy.org/pubs/preacher_hancock_2012_code.pcif.

Using these reparameterized models, we were able to predict individual
differences in the timing of key growth events: the point in time at which
children are learning math the fastest. The advantages of specityving the
moderated Gompertz curve with random coefficients in SEM are clear. Un-
like in multilevel modeling, we could additionally consider latent covariales

i the sitwation demanded it
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Estimation and Prediction of Time-Specific Individual
Differences

Our third example is drawn from the field of public health. Public health
rescarchers olten are concerned with racking infant development in coun-
trics that are susceptible to child malnutriton. Recent studics sponsored by
UNICLEF (2003, 2008a. 2008b) found that Alrican and South Asian children
are particularly likely to suffer from stunted growth due o malnutridon,
and stunting can begin i wtero. The aim of these studies is to identify deter-
minants of optimal and suboptimal infant growth so that interventions can
be implemented. In order to identify these determinants, it is necessary to
have a model that accurately reflects growth in infant weight. However, we
may also want not only to describe individual differences in growth trends,
but also to predict these individual diflerences

at any desired age—with
cavironmental variables such as breastfeeding versus bottle-[ceding, rural
versus urban status, and others. In this section, we show how to reparam-
eterize a nonlinear [unction of infant growth so that individual differences
can be operationalized as a random effect that is potentially predicted by
breastfeeding behavior

The Cebu Longitudinal Health and Nutrition Survey (Adair & Popkin,
1996; Adair cc al., 2011) includes weight data for Filipino infants every 2
months from ages 0 to 24 months (n = 2632)." The aims of the survey study
included tracking individual differences in weight gain at various ages, as
well as discovering the extent to which environmental factors (including ma-
ternal breastleeding behavior) impact weight gain. The first step in owr ap-
proach to modeling these data was to choose a plausible functional form to
describe individual and mean trajectories of change. We selected the Jenss-
Bayley model (Jenss & Bavley, 1937) because it was designed specifically to
model human growth in the first 6 years of life. The Jenss-Bayley function
is well suited for infant growth data because early biological growth olten
follows an exponential process where growth acts to limit further growth,
but the asymptote is not horizontal during the early years as in an ordinary
exponential function. One common expression of the Jenss-Bayley model
(with random coeflicients) is:

¥ = W, Tl —exp(Ms, + Ny jty) + €
, (2.28)
=T, + Nyl — Ny exp(m,f,/)+€,/

where n, and n,; are the intercept and slope cocefficients for the line defin-
ing the asymptote ol the function, n, = exp(1}y) is the vertical distance be-
tween the intercept of the Jenss-Bayley function and the lincar asymptote’s
intercept, and exp(n I/) is the ratio of the acceleration of growth at age £ to
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Figure 2.5 The Jenss-Bayley function defined by ny =6, n, = .1
n, =—3%4.

37.m,= L.11 and

that atage {— 1. Thus, the Jenss-Bayley function combines exponential and
linear growth. A generic Jenss-Bayley function is depicted in Figure 2.5.

For this example we arc interested in reparameterizing the Jenss-Bayley
function to permit the prediction of individual differences in model-im-
plied weight at any given point in time bewtween (0 and 24 months of age. In
addition, the reparameterization needs to be such that this model-implied
weight is wreated as a random eflect in the model. In a linear growth curve
model this would be a straightforward task—simply centering age at any
desired value would render the intercept factor interpretable as model-
implied weight at that age, and the intercept factor then could serve as
the dependent variable in a latent structural regression. However, because
the Jenss-Bayley model is intrinsically nonlinear we do not have this luxury.
Centering age elsewhere would result in a different functional form. With
intrinsically nonlinear functional forms like the Jenss-Bavley function, the
task is not so simple.

To reparameterize the Jenss-Bayley function, we express model-implied
weight at an arbitrary age ¢ of the investigator’s choosing. The model-im-
plied weight for the jth inlant, i/, can then be expressed as:

N, =M, + Nyl — N exp(y,l). (2.29)

This expression, in tarn, can be solved for an existing coeflicient (we chose
N,,) and the resultsubstituted back into cquation 2.28, vielding:
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¥y

N, + e, (6, =)+ Ny, exp(My )= Ny, exp(ny b)) +€,.  (2.30)

In equation 2.30, we have given up the option of estimating parameters as-
sociated with the linear intercept 3, , a random coefhicient that may not be
partcularly interesting, for the ability instead to estimate parameters associ-
ated with n/, the random coeflicient of central interest.

The model in equation 2.30 is still intrinsically nonlinear, so in order to
specity it using SEM we must first obtain a linear approximation. The par-
tial derivatives of equation 2.30 with respect to each coefficient (i.e.. 1/, 0,
Ny, and 1)), evaluated at the growth factor means, are:

Do (L, —1%) i et (et —e“"”)i S [(t e —y, e“”"} .(2.31)
| ! !

We use these derivatives as lactor loadings:

_ 1 ,i (O —{ ) i et (eyul”_ 1) i et (IEI )e,uw i
i | |
A= 1 ‘: (2—1") E et (e“*’:ﬁ—e“”‘-”) i e [(tm)e“*"—(‘z)e“*w] s
T : | ; z
l E (T—[K) i eui‘(e-‘“‘:ﬁ_e”””)) i ety [(t’”)eMI”:_(T)em('IJJ

where £ is a constant time point chosen by the researcher, corresponding
to the age at which individual differences in weight are desired.

Specifying the linearized model in SEM proceeds as before. That is, we
use the general confirmatory factor analysis model in equation 2.22 with the
loading matrix in equation 2.32 and the latent mean vector pu = [W, 1, 1, 0]".
The mean of the latent variable corresponding to the exponential rate coef-
ficient is set equal to zero so that Ap will equal the desired mean trajectory
at the parameter estimates (1, enters the model nonlinearly). The model is
depicted graphically in Figure 2.6, Panel A. As with the previous example,
clements of the random coefTicient covariance matrix are omitted from the
figure, but can be represented as:

Vo
Wi Yo, )
W= : (2.33)
Wi Vg W
\Ulu.lf“ Wm nz Wm n: \Um
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The unconditional model does not include breasdeeding as a precic-
tor. As one example of the kind of output generated by this model, con-
sider what happens when we set 7 = 6, that is, we wish (o estimate the mean
and variance of model-implied individual differences in infant weight at
age =6 months. We also permit residuals at adjacent occasions to covary
with a constant covariance. Fitting the unconditional model vields ade-
quate fit (x%, = 1274.024, p<.0001; RMSEA = .072, 90% CI = [.068,.075]
NNFI = .982) and parameter estimates (and standard errors) as [ollows:

| r
- 6778 (017) NYY (035)
n
N | l.":ﬁ(()ﬁ[) —.008 (_(Nl‘_)) 002 (<.00l)
T~ MVN (2.34)
{ n 18- (,008) D15 (026) =014 (001) 380 (021)
i |
3 | O00(N/A) || 019 (002) —001 (<00l 016 (001) 002 (<001
i | J
with
5} ]
€01 0 102 (.003) )
~ MVN , \ (2.35)
Eir-1 011 028 (o0 102 (003)
and {1, = —334(.004). The model-implied mean weight at age 6 months is

6.778 kg, with a standard deviation of (.899)"7 = 948 kg. This procedurc
can be repeated any number of times, substituting a new /" ¢ach time, vield-
ing a series of models that are equivalent in terms of fit. The model-implied
mean weight is plotted at 13 different ages in Figure 2.7, along with a 95%,
interval hased on the estimated time-specific variance and the observed
means (i.e., i’ i1.96\/\—[1: ).

The preceding represents an informative, convenient way to model and
illustrate the modelimplied mean and variance of infant weight at any de-
sired age, even if the desired age falls somewhere hetween two observations.
However, our primary interest—and the reason we reparameterized the
model in the first place—lies in predicting individual differences in weight
at any given age by cumulative breastfeeding wp (o that point. At every occa-
sion ol measurement, mothers were asked whether they had breastted the
previous day (0,1). We defined cumwlative breastfecding as the average ol all
breastfceding responses up 1o a given point in time. It serves as an indica-
tor of how much a given infant has been breastfed since birth, relative to
other infants of the same age. We introduced cumulative breastfeeding as an
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Figure 2.7  Obscrved and modelimplied infancweight at H (hllc:rn:nl ages,
plotted with 95% interval based on the estimated tme-specilic variance (i.c..
{7 £1.96 W, ). Solid dots represent observed means.

infantlevel predictor of all four random coeflicients. Our main interest was
in the effect of cumulative breasteeding on infant weight at particular ages.

As with the second example, the structural equation for the random coet-
ficients 1, in the conditional model may be WisiLeias equation 2.25. Regress—
ing the model-implied weight factor (along with the othcr growth factors)
on cumulative breastfeeding at each pointin time yields diflerent parameter
estimates and model fit at each age because cumulative breasileeding is a
different variable at each occasion of measurement. All of the mocdels fic well
by standard criteria (minimum RMSEA = .051 atages 4-8 months; maximum
RMSEA =.062 at birth). The pattern of effects in Figure 2.8 tells us som(?-
thing useful: The effect of cumulative breastfeeding on infant weight is post-
tive in the early months, but negaiive at 10 months and beyond. A steep drop
occurs in the effect of breastfeeding on weight by about the G-month mark.
This corresponds to the age at which the American Academy of Pedia[r.ics,
the World Health Organization, and UNICEF recommend supplementing
breast milk with solid food. Investigating the reasons [or the change from a
positive effect to a negative effect by 10 months is bevond the scope of this
example, but we may conjecture that infanes who sll rely l?cavllly on l)reaslt—
feecding at or beyond 10 mouths of age are probably experiencing other di-
etary deficiencies that explain their relatively lower weight. Perhaps mothers
need Lo continue breastleeding because of other comorbid factors, like pov-
erty, which are linked 1o these other deficiencies. Mplus syntax fov both the
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Figure 2.8 The clfect of cumulative breastleeding on model-implied infant
weight at 15 ages. Circled slope estimates arce statistically significant at o = .05.

unconditional and conditional models is provided at http://quantpsy.org/
pubs/preacher_hancock_2012_code.pdf.

SUMMARY AND EXTENSIONS

In this chapter we have provided a [ramework for reparameterizing linear
and nonlinear LGMs to yield new parameters and latent variables to answer
important substantive questions. Often a model can be reparameterized to
yield a point estimate and interval estimate for a new parameter (hat is of
central interest to the researcher because it represents some salient aspect
ol change that was initially inaccessible. In other models, reparameteriza-
tion permits treating the new parameter as a random coeflicient that varies
across individuals.

We presented [our steps for using SEM (specifically, the SLCM approach)
to model trends using reparameterized models. Again, they are:

1. Reparameterizing the target function to contain substantively impor-
lant parameters or random coellicients.

2. Linearizing the target function to render it specifiable in SEM soft-
ware.

3. Specilying the model using the structured latent curve approach.

4. Estimating model parameters (point and interval estimates).

S ]
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We described this approach conceptually, then gave more detailed ex-
planations in the context of exemplars representing different classes of the
kinds of reparametcrizations in which rescarchers might reasonably be in-
terested. Specifically, we illustrated the steps using a clinical/educational
psychology example on affiliation with delinquent peers, a mathematics
learning example in which aspects of lcarning could be predicted by gen-
der, and a public health example involving prediction of infant growth.

Reparamelerization has the potential to make the already versatile SEM
framework even more flexible. Pardceularly in longitudinal scttings, repa-
ramelerization permits the researcher to treat virtually any aspect of change
as a fixed and known value, an estmated parameter, or in many cases a
random cocficient that varies across individuals. The latter two options
provide a way o investigate whether these aspects of change are predicted
or moderated by level-2 predictors (e.g., mathematics learning or cumula-
tive breastfecding). These examples illustrated three kinds of reparameter-
ization rescarchers might be interested in using. The first example focused
on estimating parameters associaled with homogeneity or heterogeneity;
the second example treated three aspects of change as random coeflicients;
and the third example focused on the estimation and prediction of time-
specific individual differences in an outcome. We feel that reparameteriza-
tion has great potential for helping researchers create models that more
closely align with theoretical predictions, and should be emphasized to a
greater extent in graduate training.

We now close this chapter by emphasizing that the general approach
to reparamelerization described in our steps is by no means limited to the
classes of reparameterization illustrated in this chapter. Other examples of
potential use are readily devised, as follows:

1. Hipp, Bauer, Curran, and Bollen (2004) fit a partially nonlincar
growth curve model to scasonal crime trend data in which intrinsi-
cally nonlincar parameters were treated as fixed coeflicients. Using
the reparameterization approach described in this chapter, simitar
models could be fit 1o cyclic daa treating, for example, instanta-
ncous rate of change as an individual-differences variable, amenable
10 prediction by person-level characteristics. The variance of this
rancdom cocllicient could serve as a proxy for cycle synchrony versus
asynchrony.

9. The field of metabolism biochemisury is full of examples in which
itis of interest 1o assess the rate at which a drug is absorbed and
metabolized. Often the functions used to model these dynamics are
complex nonlinear trajectories (see Davidian & Giliinan, 1995).
Reparameterization could be used in tandem with SLLCM to treat
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salient characteristics of growth as random effects, and to embed the
trajectory function into a larger causal network.

3. In education research it is often of interest to gauge the rate of
learning from year to year when academic years are separated by
summer breaks (Entwistle & Alexander, 1992; Hancock & Koran,
2005). When multiphase segmented spline models are used, it is
possible through reparameterization to treat the angle separating
the slopes of adjacent linear segments (in radians or degrees) as a
random coefficient.

We are confident that many more uses for reparameterization will become
apparent to researchers, and we look forward to the expanded scope of
research questions that these methods will help to answer.

APPENDIX
LISREL and Mplus Code to Accompany Examples

Three Ways to Estimate an Aperture Parameter

Method 1: Lambda shift method

LATENT GROWTH CURVE OF HANCOCK & CHOI DATA, EX. 2
DA NI=4 NO=198 MA=CM

CM

11.000

5.860 13.000

6.205 8.094 14.000

6.103 8.798 10.177 16.000

ME

3.3 3.7 4.0 4.2

MO NY=4 NE=2 LY=FU,FI BE=FU,FI TY=FI AL=FR PS=SY,FI TE=DI,FR AP=1
LE

INT SLP

FRPS11PS22!PS21

VA 1LY 1l11LY2 1LY 310LY 41
COLY 12 = 4-PA 1

COLY 2 2 = 6-PA 1

COLY 32=7-PA1

CO LY 4 2 = 8-PA 1

PD

OU IT=5000 AD=OFF ND=4

Method 2: Phantom variable approach

LATENT GROWTH CURVE OF HANCOCK & CHOI DATA, EX. 2
DA NI=4 NO=198 MA=CM
CM
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11.000

5.860 13.000

6.205 8.094 14.000

65.103 8.798 10.177 16.000
ME

3.3 3.7 4.0 4.2

MO NY=4 NE=3 LY=FU,FI BE=FU,FI TY=FI AL=FI PS=SY,FI TE=DI,FR
LE

INT SLP PHANTOM

FR AL 1 AL 2

PA PS

01

PD
OU IT=5000 AD=OFF ND=4

Method 3: Structured latent curve approach

LATENT GROWTH CURVE OF HANCOCK & CHOI DATA, EX. 2
DA NI=4 NO=198 MA=CM

cM

11.000

5.860 13.000

6.205 8.094 14.000

6.103 B.798 10.177 16.000

ME

3.3 3.7 4.0 4.2

MO NY=4 NE=3 LY=FU,FI TY=FI AL=FR PS=SY,FI TE=DI,FR AP=1
LE
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INT SLP APERTURE
PA PS

1

01

000
MA PS

el
b
=
3

(9]
O)—‘HHD—'EOOOO
o o O Ot
S
o o O o

LY 1 2 = 4-PA 1

CO LY 2 2 = 6-PA 1 "
COLY 32 =7-PA1

COLY 4 2 = 8-PA 1

CO LY 1 3 = —1*AL(2)

CO LY 2 3 = -1*AL(2)

CO LY 3 3 = -1+AL(2)

CO LY 4 3 = —1%AL(2) !
CO AL 3 = PA 1

PD

IT=5000 AD=OFF ND=4 !

o
c

A Reparameterized Gompertz Structured Latent
Growth Curve Model with Random Coefficients

Example application to ECLS-K mathematics data (kindergarten
through eighth grade). Random coefficients represent the upper asymp-
tote, surge point, and surge slope (see Choi et al., 2009) for definitions
of these terms.

TITLE: ECLS-K math, reparameterized Gompertz curve;
DATA: FILE = eclsk.dat;

VARIABLE: NAMES = id

!gender !0=M/1=F; uncomment gender for conditional model
m_fk m_sk m_f1 m_sl m_s3 m_s5 m_s8;

USEVARIABLES ARE gender m_fk-m_s8;

MISSING = .;

ANALYSTS:

ALGORITHM = INTEGRATION;

INTEGRATION = MONTECARLO; :
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MODEL:

iFactor Loadings
g0 BY m_£k* (Lg01)
m_sk-m_s8(Lg02-Lg07) ;
£0 BY m_fk*(Lt01)
m_sk-m_s8(Lt02-Lt07);
g3 BY m_fk*(Lg31)
m_sk-m_s8(Lg32-Lg37);

iMeans ,
[m_fk-m_s8@0}; [g0*147] (mu_g0); (t0@O0]; [g3*22]{mu_g3);

variances and covariances
m_fk-m s8; g0*495 t0*.24 g3; g0 WITH tO g3; t0 WITH g3;

|Regressions o
1g0 t0 g3 ON gender; !uncomment line for conditional model

MODEL CONSTRAINT: -
NEW(mu_t0*.7); !Introduce mean of surge point

'Asymptote loadings

Lg0l = exp(-l*exp(((mu_g3*exp(l)* (mu_t0-0.0)}/mu_g0)))
+{(mu_g3*exp (1) * (mu_t0-0.0) *exp(mu_g3*exp (1) * (mu_t0-0.0)/mu_g0)
*exp (-1*exp (mu_g3*exp (1) * (mu_t0-0.0)/mu_g0))) /mu_g0);

Lg02 = exp(-l*exp(((mu_g3*exp(1l)*(mu_t0-0.5))/mu_g0)))
+{(mu_g3*exp (1) * (mu_t0-0.5) *exp (mu_g3*exp (1) * (mu_t0-0.5) /mu_g0)
*exp (~1*exp (mu_g3*exp(1l)* (mu_t0-0.5)/mu_g0)))/mu_g0);

Lg03 = exp(-1l*exp({(mu_g3*exp(l)*(mu_t0-1.0))/mu_g0)))
+((mu_g3*exp (1) * (mu_t0-1.0) *exp (mu_g3*exp (1) * {(mu_t0-1.0)/mu_g0)
*exp(-1*exp (mu_g3*exp(1)* (mu_t0-1.0)/mu_g0)))/mu_g0);

Lg04 = exp(-1*exp(((mu_g3*exp(1)*(mu_t0-1.5))/mu_g0)))
+((mu_g3*exp(1)* (mu_t0-1.5) *exp (mu_g3*exp (1) * (mu_t0-1.5)/mu_g0)
*exp{-l*exp{mu_g3*exp(l)* (mu_t0-1.5}/mu_g0})}/mu_go0);

Lg05 = exp(-1*exp(((mu_g3*exp(l)* (mu_t0-3.5))/mu_g0}))
+{(mu_g3*exp(1l)* (mu_t0-3.5)*exp(mu_g3*exp(1l)*(mu_t0-3.5)/mu_g0)
*exp (-1*exp(mu_g3*exp (1) * (mu_t0-3.5)/mu_g0)))/mu_g0);

Lg06 = exp(-1*exp(((mu_g3*exp(1l)*(mu_t0-5.5))/mu_g0)))

+( (mu_g3*exp(1)* (mu_t0-5.5) *exp (mu_g3*exp (1) * (mu_t0-5.5) /mu_g0)
*exp (-1*exp (mu_g3*exp (1) * (mu_t0-5.5) /mu_g0)})/mu_go0);

Lg07 = exp(-l*exp( ((mu_g3*exp(1)* (mu_t0-8.5))/mu_g0)))
+{(mu_g3*exp (1) * (mu_t0-8.5) *exp(mu_g3*exp (1) * (mu_t0~8.5) /mu_g0)
*exp(-1*exp(mu_g3*exp(l)*(mu_t0-8.5)/mu_g0)))/mu_g0);

!Surge point loadings

Lt0l = -1*mu_g3*exp(l)*exp (mu_g3*exp(1l)* (mu_t0-0.0)/mu_g0)
*exp (~1*exp (mu_g3*exp(1)* (mu_t0-0.0)/mu_g0));
Lt02 = -1*mu_g3*exp (1) *exp (mu_g3*exp(1l)* (mu_t0-0.5)/mu_g0)
*exp (-1*exp(mu_g3*exp(1l)* (mu_t0-0.5)/mu_g0));
Lt03 = -1*mu_g3*exp(1)*exp(mu_g3+*exp(l)*(mu_t0-1.0)/mu_g0)

*exp(-l*exp(mu_g3*exp(1l)* (mu_t0-1.0) /mu_g0));



54 = K. J. PREACHER and G. R. HANCOCK

Lto4d = —1*mu_g3*exp(l)*exp(mu_gB*exp(l)*(mu_tO—l.S)/mu_gO)
*exp(-l*exp(mu_g3*exp(l}*(mu_t0-1.5)/mu_g0));
LtdS = -l*mu_g3*exp(1)*exp(mu_g3*exp(l)*(mu_tO—].S)/mu_gO)
*exp(—l*exp(mu_g3*exp(l)*(mu_tO—B.S)/mu_gO));
Lt06 = —1*mu_g3*exp(l)*exp(mu_gB*exp(l)*(mu_tO—S.S)/mu_gO)
*exp(—l*exp(mu_g3*exp(1)*(mu_tO—S.S)/mu_gO));
Lt07 = ~l*mu_g3*exp(l)*exp(mu_g3*exp(l)*(mu_t0—8.5)/mu_90)

*exp(—l*exp(mu_gB*exp(l)*(mu_tO—B.S)/mu_gO));

!Surge slope loadings

Lg31l = -l*exp(l)*(muﬂtO—0.0)*exp(mu_gB*exp(l)*(mu_tO—0.0)/mu_gO)
*exp(—l*exp(mu_gB*exp(l)*(mu_tO—0.0)/mu_gO));
Lg32 = —l*exp(l)*(mu_tO—O.B)*exp(mu_g3*exp(l)*(mu_tO—O.S)/mu_gO)
*exp(~l*exp(mu_g3*exp(1)*{mu_tO—O.S)/mu_gO));
Lg33 = —l*exp(l)*(mu_tO—l.O)*exp(mu_gB*exp(l)*(mu_tO—l.O)/mu_gO)
Fexp(-1*exp(mu_g3*exp(1l)* (mu_t0-1.0)/mu_g0));
Lg34 = —l*exp(l)*(mu_tO—l.S)*exp(mu_gB*exp(l)*(mu_tO—l.S)/mu_gO)
*exp (-1*exp(mu_g3*exp(l)* (mu_t0-1.5)/mu_g0));
Lg35 = -1*exp(l)*(mu_t0—3.5)*exp(mu_gB*exp(l)*(mu_tO—B.S)/mu_gO)
*exp{-l*exp(mu_g3*exp(l)* (mu_t0-3.5)/mu_g0));
Lg36 = —l*exp(l)*(mu_tO—S.S)*exp(mu_g}*exp(l)*(mu_t0—5.5)/mu_g0)
*exp(—l*exp(mu_gB*exp(l)*(mu_tO—S.S)/mu_gO));
Lg37 = —l*exp(l)*(mu_t0—8.5)*exp(mu_g3*exp(l)*(mu_t0—8.5)/mu_gO)

*exp(-l*exp(mu_gB*exp(l)*(mu_tO—S.S)/mu_gO));

The Jenss-Bayley Model Reparameterized to Estimate
the Effect of Cumulative Breastfeeding on Infant
Weight at Any Desired Age

We did not have permission to post the Cebu infant data, but we provide
Mplus code below to show how to estimate the model.

TITLE: cebu growth data (jenss-bayley) with mobile intercept;
DATA: FILE IS cebu_wide_more.dat;

VARIABLE: NAMES ARE id momht rural male age0-agel2 br0-brl2 h0-hl2
w0-wl2 b0 b2 b4 b6 b8 bl0 bl2 bld bi6 bl8 b20 b22 b24 xb6 xbs xbl0
xb1l2 xbl4 xbli6 xbl8 xb20 xb22 xb24;

USEVARIABLES ARE cbf !comment out ‘cbf’ for unconditional model
x0-x12; !b0-b24 cumul BF means from age Om; xb6-xb24 from age 6m
MISSING ARE ALL (-999);

USEOBSERVATIONS ARE id NE 1600044; 'omit outlier

DEFINE: !below, choose to model height or weight
'x0=h0;x1=h1;x2=h2;x3=h3;x4=h4;x5=h5;x6=h6;
!x7=h7;x8=h8;x9=h9;xlO=th;xll=hll;x12:h12;
xC0=w0;x1=wl;x2=w2;x3=w3; x4=wd; X5=w5; X6=w6;
x7=w7;x8=w8;x9=w9:xlO:wlO;xll:wll;xl2:w12;

tcomment out next line for unconditional model

cbf=bl2; ! <- SET AGE FOR CUMULATIVE BREASTFEEDING (mos.) ;
ANALYSIS: ESTIMATOR IS ML; ITERATIONS ARE 10000; !BOOTSTRAP IS 300;
MODEL: ([x0-x12@0]; x0-x12*.1(vl); x0-x11 PWITH x1-x12*.027(v2);
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fa*rl.2; £b*.005; fc*.288; fd*.02; fa WITH fb fc fd;

£fp WITH fc fd; fc WITH f4:

[fa*Q](mfa); [fb*.13] (mfb); [fc*1.2]){(mfc); [£4€0];

{ fa, fb, & fc are linear

fa BY x0-x12@1;

fb BY x0*(b0); fb BY x1-x12(bl-bl2);

fc BY x0*(c0); fc BY x1-x12{cl-cl2);

£4 BY xC*(d0); fd BY x1-x12(dl-dl2);

{comment out next line for unconditional model

fa ON cbf*-.53; fb ON cbf*.05; fc ON cbf*-.55; fd ON cbf*-.23;

1jenss-bayley with a mobile intercept
MODEL CONSTRAINT: NEW (mfd*-.334 t0);
t0=12; ! <- SET INTERCEPT LOC. (mos.)

p0=0-t0; cO=exp(mfc+mEd*t0)-exp{mfc+mfd*0);
bl1=2-t0; cl=exp(mfc+mfd*t0)-exp (mfc+mfd*2);
b2=4-t0; c2=exp(mfc+mfd*t0)-exp (mfc+mfd*4);
b3=6-t0; c3=exp(mfc+mfd*t0)-exp(mfc+mid*6};
bd=8-t0; céd=exp(mfc+mfd*t0)-exp(mfc+mfd*8);
b5=10-t0; cS5=exp(mfc+mfd*t0)-exp{mfc+mfd*10) ;
b6=12-t0; cé=exp(mfc+mfd*t0)-exp(mEc+mfd*12};
b7=14-t0; c7=exp(mfc+mfd*t0)-exp (mfc+mfd*14);
b8=16-t0; c8=exp(mfc+mfd*t0) -exp(mfc+mfd*16) ;
b9=18-t0; c9=exp{mfc+mfd*t0)-exp(mfc+mfd*18) ;
b10=20-t0; clO=exp(mfc+mfd*t0)-exp (mfc+mfd*20);
b11=22-t0; cll=exp{mfc+mfd*t0)-exp(mfc+mfd*22); E
b12=24-t0; cl2=exp(mfc+mfd*t0)-exp (mfc+rmfd*24);

dO0=tO0*exp (mfc+mfd*tC)-0*exp (mfc+mfd*0) ;
dl=t0*exp (mfc+mfd*t0) -2*exp (mfc+mfd*2) ;
d2=t0*exp (mfc+mfd*t0)-4*exp (mfc+mfd*4);
d3=t0*exp (mfc+mfd*t0)-6*exp (mfc+mfd*6) ;
dd4=tO0*exp{mfc+mfd*t0)-8*exp (mfc+mfd*8) ;
dS=tO0*exp{mfc+mfd*t0)-10*exp (mfc+mfd*10) ;
dé=tO0*exp (mfc+mfd*t0) -12*exp (mfc+mfd*12) ;
d7=t0*exp (mfc+mfd*t0)-14*exp (mfc+rmfd*14) ;
d8=t0*exp (mfc+mfd*t0}-16*exp (mfc+mfd*16) ;
d9=t0*exp (mfc+mfd*t0)-18*exp{mfc+mfd*18};
dl0=t0*exp (mfc+mfd*t0)-20*exp (mfc+mfd*20) ;
dll=tO*exp{mfc+mfd*t0)-22*exp (mfc+mfd*22);
dl2=t0*exp (mfc+mfd*t0)-24*exp{mfc+mfd*24)

i

OUTPUT: TECH1 TECH3 STDYX; !CINTERVAL(BCBOOTSTRAP) ;

ACKNOWLEDGMENT

We thank Kevin Grimm and Jeff Harring for valuable help with the Gom-
pertz curve example.



56 = K. J. PREACHER and G. R. HANCOCK
NOTES
. SEM sofiware packages capable of imposing nonlincar constraines curren(-

v include LISREL, Mplus, SAS PROC CALIS and PROC TCALIS, Mx, and
OpendIx.

2. Weassume homoscedasticity lor parsimony, not because the model requires it

5. The Taylor series approximation uses mean-centered latent variables, but the
diagrams and model specilications used in (his chapter simplify matters Iy
giving some of the latent variables mean parameters.

+. Computation of NNFI required a nonstandard null model; see Widaman and

Thompson (2008).

Ao I the parameters entering the function nonlincarly are fixed cocllicients
rather than random: cocflicients, the model is wermed  conditionally livear
(Blozis & Cudeck. 1999).

6. We omitted from our analyses one infant who grew o be nearly wice the
weight of his peers, yielding » = 2,631,
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