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Abstract
Many interventions are characterized by repeated observations on the same individuals (e.g., baseline, mid-intervention, two to three post-
intervention observations), which offer the opportunity to consider differences in how individuals vary over time. Effective interventions
may not be limited to changing means, but instead may also include changes to how variables affect each other over time. Continuous time
models offer the opportunity to specify differing underlying processes for how individuals change from one time to the next, such as
whether it is the level or change in a variable that is related to changes in an outcome of interest. After introducing continuous time models,
we show how different processes can produce different expected covariance matrices. Thus, models representing differing underlying
processes can be compared, even with a relatively small number of repeated observations. A substantive example comparing models that
imply different underlying continuous time processes will be fit using panel data, with parameters reflecting differences in dynamics
between control and intervention groups.
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Intervention research often focuses on the identification of mean

differences as the primary outcome of interest. We proceed from

developmental and clinical perspectives built on dynamic systems

theory, where interventions may result in not only mean-level

changes but also changes in the relations within and between vari-

ables over time (Compas et al., 2015; Horowitz et al., 2007; Shel-

leby et al., 2018). That is, by understanding and modifying the

underlying processes that contribute to increased risk and dysfunc-

tional outcomes, it may be possible to promote desirable outcomes

over time.

To understand the covariance between variables and within

variables as they change across time, repeated observations are

required. Many intervention studies involve collecting repeated

observations on the same individuals (e.g., baseline, mid-

intervention, two to three post-intervention observations), which

offer the opportunity to test for differences in how individuals or

groups vary over time. Moreover, effective interventions may not

be limited to changing the mean levels of outcomes; they may also

change how variables relate to each other. Indeed, changing rela-

tions between variables may be one of the fundamental differences

between interventions that have enduring effects and those that do

not, as this would be suggestive of a change in the dynamics of an

individual’s system. The present article focuses on providing tools

for modeling concurrent change between variables to offer preven-

tion science the opportunity to address novel questions about con-

current change and to model changes in dynamics, even with a

limited number of repeated observations.

The initial sections of this article provide a grounding in lan-

guage for expressing change relations and then explore the effects

and challenges of external influences on the modeling of change.

The fitting of models for repeated observations that exhibit frequent

reciprocal, nonlinear change is the point of focus, as such processes

may be particularly difficult to observe using models that focus on

mean differences. We present a method for numerical approxima-

tion of such models both conceptually and in the context of a sub-

stantive example. In the substantive example, we model anxiety/

depression in the context of an intervention, as particularly effec-

tive interventions for anxiety/depression may achieve efficacy (in

part) by changing the dynamics of people’s anxious responses to

key precursor stimuli (Bettis et al., 2018; Foa et al., 1980; Kanfer

et al., 1975).

Expressing Change Relations

We begin by introducing a general framework for understanding

change that can be used to describe theories of change across a wide

range of modeling approaches (Deboeck et al., 2013, 2015). Deri-

vatives are the basis for this general framework. Derivatives

express the change in one variable with respect to another variable
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(Blanchard et al., 2006). Commonly, derivatives are used to express

the change of a variable with respect to a change in time. The value

of a variable at a specific point in time is the level or zeroth

derivative (e.g., the position of a car at a specific point in time).

A directional change in level with respect to time is the velocity or

the first derivative (e.g., the change in position of the car over

some time interval when driving in one direction along a straight

road). A change in the velocity with respect to time is the accel-

eration or the second derivative (e.g., the change in speed of the

car due to acceleration or braking). One of the advantages of

expressing relations in this framework is that each of these terms

is mathematically defined. Descriptions of change discussed using

terms such as level, velocity, and acceleration are directly trans-

latable into testable models.

When plotting the change in a variable over time, the zeroth,

first, and second derivatives each has a different representation. Like

plotting a single point at a given time, the zeroth derivative is the

instantaneous level of a variable at a given time. Straight-line

changes in variables correspond to times across which the velocity

of a variable is constant and nonzero, and there is no acceleration.

When trajectories across time curve, similar to the curve of a quad-

ratic model, the velocity is changing due to either positive or nega-

tive acceleration. For example, Figure 1 depicts change in two

variables over time (utilization of a particular resource and risk of

a problematic outcome). Furthermore, we could imagine that change

in resource utilization has the effect of reducing risk. In this example,

the effect of the resource on risk begins immediately but is initially

too small to be detected. Change in resource utilization is small over

any brief interval of time and gradually increases with time. Like a

small lifestyle change, the effect on risk is not immediately apparent,

but continued application of a change allows for small changes in

risk to accumulate into a discernible effect later in time.

The scenario in Figure 1 is challenging from a statistical per-

spective. Even though the effect of resources on risk reduction is

visually apparent, tests on the 1-year follow-up, a linear growth

model, or calculating the correlation of the trajectories would not

support the inference statistically. Both the resource and risk tra-

jectories can have derivatives at each moment across time. If one

calculates the correlation of derivatives from the two variables,

specifically the velocity of resources and acceleration of risk, only

then does a statistical relation become apparent. The risk trajectory,

which was increasing due to other factors, gradually decelerates and

eventually improves in response to the resources in the environment.

When the trajectories of two variables change in tandem, corre-

lations will be evident among multiple derivatives (e.g., correlated

velocities and correlated accelerations). When variables do not

change in tandem, such that change in one promotes changes in the

other, relations may occur only between specific pairs of deriva-

tives, as some pairs of derivatives can be mathematically indepen-

dent (Deboeck et al., 2013). As promoting changes may result in

scenarios where changes in a variable do not result in simultaneous,

in-tandem changes of the desired outcome, this presents a challenge

for prevention research. Models that relate derivatives to each other

(i.e., differential equation models) can be used to explore different

derivative relations (Blanchard et al., 2006).

Open Systems

In the social, behavioral, and medical sciences, systems of inter-

connected variables are usually open systems, rather than closed

systems (Abraham & Shaw, 2005; Granic & Hollenstein, 2003;

Vedeler & Garvey, 2009). Open systems are not isolated from their

surroundings and consequently, interact with unobserved variables.

These exogenous, unobserved variables are evident in the system,

as they contribute to perturbations to the studied variables. The

perturbations, which can be considered dynamic errors, differ from

more commonly modeled measurement error in that they change

the true states of the variables. Moreover, as these stochastic per-

turbations change the true states of the variables, they affect not

only the current state of a variable but also future states.

When we engage in the modeling of change processes, we must

consider the frequency and magnitude of stochastic perturbations

relative to one’s sampling rate. Frequently, significant amounts of

time elapse between observations, with many unmeasured variables

that randomly perturb the change of a variable over time. For some

variables, the frequency and magnitude of these stochastic pertur-

bations are relatively small, and the resulting variables may follow

relatively smooth developmental trajectories (e.g., intraindividual

change; Nesselroade, 1991). For some variables, the frequency and

magnitude of these stochastic perturbations are pronounced, pro-

ducing deviations from smooth trajectories; in the more extreme

(but not uncommon) cases, the resulting trajectories may be partic-

ularly nonlinear and exhibit frequent back-and-forth fluctuations

(e.g., intraindividual variability; Nesselroade, 1991). When model-

ing the relations of derivatives to each other, it becomes necessary

to consider the frequency and magnitude of stochastic perturba-

tions. Relating derivatives of variables that follow smoother devel-

opmental trajectories, and those that exhibit more frequent

fluctuations, requires different modeling approaches.

Models of Derivatives

We now consider a series of three models wherein different deri-

vatives for two variables can be related to each other. The models

presented are all applicable to situations where there are relatively

few observations on the same individuals across time (e.g., monthly

observations across 3 months on multiple individuals; i.e., panel

data), although the same concepts apply to more intensively

sampled intraindividual data (e.g., Bergeman & Deboeck, 2014;
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Figure 1. The Initial Risk Trajectory of an Individual Can Be Increasing Due

to Other, Potentially Unmeasured, Factors.

Note: Whereas the utilization of resources changes the individual’s risk, it

takes time for the accelerating effect to become apparent. Scenarios like this

emerge when two variables do not change in tandem, but rather serve to

promote change in each other. In such cases, many statistical analyses can

overlook the fact that the resource utilization reduces risk, insofar as the

mean risk continues to increase initially despite increasing resources.
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Montpetit et al., 2010). The series of models builds incrementally

from one that is more appropriate when stochastic perturbations are

rare and small in magnitude (e.g., Figure 2(a)), toward a model where

stochastic perturbations are frequent or larger in magnitude (e.g.,

Figure 2(c)). All of the models presented are continuous time models,

as all of them explicitly include time in the models (Voelkle et al.,

2012), but differ substantially in the true-score change processes that

are assumed to occur from one observation to the next.

Latent growth curve model. One foundational model in the devel-

opmental literature is the latent growth curve model (LGCM),

which is related to multilevel modeling with time as a predictor

(Mehta & Neale, 2005; Newsom, 2015). Figure 3 depicts an LGCM

with two variables X and Y observed on three occasions t ¼ 0, 1, 2

(squares). Like a standard LGCM, the loadings (ltime,derivative;

arrows) of the observed indicators on the latent variables (circles)

have been fixed to define the latent variables.1 In the present model,

the loadings result in latent variables that represent the level (X at

t ¼ 0) and velocity (dX/dt) of the indicators over time (Boker et al.,

2004). Consequently, for each indicator, at each time:

Xt;i ¼ llevel;tXt¼0; i þ lvelocity;t dX=dtð Þi þ qt;i

the observed values are equal to the level of X at t¼ 0 (llevel,t Xt¼0,i)

plus the linear change since t ¼ 0 (lvelocity,t(dX/dt)i). The level and

velocity are commonly, and equivalently, conceptualized as the

intercept and slope. A different estimate of level and velocity is

allowed for each individual i, although across all individuals the

level and velocity are assumed to be multivariate normally distrib-

uted (Bollen, 1989). The model, as presented, also includes inde-

pendent measurement errors at each time and each individual qt,i.

Using latent variables that represent the level and velocity of the

variables, one can pose questions about the relations between deri-

vatives (Deboeck et al., 2015). For example, path a could address

whether one’s level of resources at t ¼ 0 is related to the rate of

change (velocity) in the outcome. In contrast, path b could

address whether the rate of change in resources (velocity) relates

to the rate of change in risk. Recoding time from 0, 1, 2 to �1, 0, 1,

such that t ¼ 0 occurs in the center of a series of three observations

separated by equal intervals, would allow for consideration of

whether the average level in resources is related to the velocity of
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Figure 2. Plots of Three Different Processes With Increasing Nonlinearity Due to Stochastic Perturbations.

Note: The pairs of lines represent coupled variables. The lines represent the underlying process, while the dots represent the measurement occasions.
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Figure 3. An Example of a Latent Growth Curve Model, With the Latent Variable Names Replaced With Derivatives.

Note: Different derivative relations, such as level–velocity (path a) and velocity–velocity (path b), could be explored.
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risk. These different paths allow one to determine whether the

amount of resources, or the changes in available resources, or both,

relate to changes in risk over the course of 3 months. It should be

noted that while this model can be fit, the direction arrow for

velocity can be a point of concern as when estimated over long

periods of time, some of the information used to estimate the varia-

bility in X velocity postdates information used to estimate the varia-

bility in Y velocity. This requires an assumption of temporal

equilibrium such that the causal process does not change depending

on when you happened to make the observations.

Latent change score model. The LGCM works well when trajec-

tories are relatively smooth, as shown in Figure 2(a), but less so

when the dynamics of the system or the influence of perturbations

results in trajectories with increasingly nonlinear profiles, as shown

in Figure 2(b) (McArdle & Nesselroade, 2014; Newsom, 2015). For

variables with these trajectories, the average levels or velocities

estimated from all observations may not be an appropriate descrip-

tion of change across time. In such a system, resources and risk are

neither constant nor continually growing; there are steps forward

and setbacks. In such cases, it becomes preferable to estimate mul-

tiple levels and velocities across a time series, as the level and

velocity can differ between different pairs of observations.

Latent change score (LCS) models are one alternative to

LGCMs that allow for multiple estimates of level and velocity

across a series of observations. Figure 4 depicts an example of an

LCS model with two variables measured over three observations.

Except for the first indicator X0, in this model:

Xt;i ¼ 1Xt�dt;i þ dt dX=dtð Þt�dt;i

where dt is a fixed value equal to the time elapsed between two

observations. This equation states that an observation (Xt,i) is

equal to the prior observation (Xt�dt,i) plus the elapsed interval

(dt) multiplied by the velocity at which the variable is changing

((dX/dt)t�dt,i). Note that in this equation, there is no measurement

error; this is a necessary constraint when using observed variables

such that the latent variables are equal to the velocity (change)

between the two observations t � dt and t (Newsom, 2015).2 This

model, therefore, states that the value observed for an indicator at

time t is exactly equal to the prior observations plus the change

between the two observations, although the amount of change for

any individual is allowed to differ i. In addition to constraining the

error variances of later indicators to be zero (no measurement

error), additional constraints are required to allow the model

depicted to be identified. One common constraint when considering

stationary processes is that the variance of the velocities, which can

be considered the innovations to the system or stochastic perturba-

tions, is constant across time, and that a single parameter can be

estimated to represent both variances. As the derivatives are corre-

lated and not constrained to be equal, individuals can have different

velocities between each pair of observations, which allows this

model to approximate nonlinear changes using linear segments.

As with the latent variables in the prior model, the latent velo-

city is assumed to be normally distributed, and to differ as a random

effect would for each individual. Consequently, the velocity from

one observation to the next is allowed to vary for each individual,

but for any given individual and any pair of observations, the velo-

city is a single value. Consequently, to the degree to which the

change between observations is relatively close to linear, as in

Figure 2(b), this model may be reasonable. Also, as with the

previous model, paths a and b can be used to address whether the

level or velocity of resources affects the velocity of risk. That is,

over a monthly timescale, we can ascertain whether the level of

resources or the change in resources is related to monthly changes

in risk.

Stochastic differential equations. One assumption of the LCS

model is that the velocity between subsequent observations is linear

for each individual. This assumption may be incorrect when (1) the

underlying variables have nonlinear trajectories; (2) the rate, mag-

nitude, and effects of stochastic perturbations are sufficient to con-

tribute to nonlinear trajectories; and (3) observations are sampled

infrequently relative to the rate at which variables change. With

increasingly nonlinear changes occurring between observations, the

velocity estimated by LCS between each pair of observations may

no longer be a reasonable approximation of the data.

When it is likely that an individual exhibits frequent changes in

velocity between observations, as shown in Figure 2(c), the changes

in velocity can be approximated through the introduction of latent

variables. Figure 5 shows an example of a model similar to the LCS

model, but with additional latent variables between observations.

There are two primary consequences of these additional latent vari-

ables. First, rather than estimating a single velocity between two
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Figure 4. An Example of a Latent Change Score (LCS) Model.

Note: In this model dX/dt and dY/dt correspond to the first derivative

(velocity) of the two variables. Different derivative relations, such as level–

velocity (path a) and velocity–velocity (path b), could be explored. The

present figure differs from more common depictions of LCS models, in that

the change scores are centered over the initial observation rather than the

second, but this difference in depiction does not change the model. This

allows the differential equation to be expressed in a single vertical slice and

highlights that the value at later times is equal to the prior time plus the

change that has occurred.
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observations, the change between two observations consists of

many more, smaller linear segments, thus allowing for ongoing

stochastic perturbations that may cause frequent back-and-forth

changes. Second, as seen in paths a and b, the effects of variables

are evaluated as the ongoing, minute effects, which can accumulate

over time. It should be noted that while the model expresses linear

relations between the derivatives (i.e., linear in the equations), the

resulting trajectories are nonlinear and can be more akin to those

depicted in Figure 2(c).

As the number of latent steps increases, one approaches a model

where individuals continuously experience stochastic perturba-

tions, and variables are modeled as if they affect each other con-

tinuously rather than at discrete intervals. As the number of latent

variables becomes very large, this approach becomes a numerical

approximation of a stochastic differential equation (SDE) model

(Mikosch, 1998). SDEs are differential equation models that

include stochastic distributions, which may be useful in modeling

the stochastic perturbations that affect the changes across time in

open systems (Abraham & Shaw, 2005). Rather than producing

deterministic trajectories like ordinary differential equation models,

SDEs produce a distribution of outcomes, as the exact values of the

stochastic perturbations for any individual are unknown. These

models may be a reasonable approximation of open systems, par-

ticularly where variables continue to affect each other continuously

between observations. Solving for the distribution of outcomes

expected from an SDE requires one to integrate the SDE, thus

solving for the sum of all changes occurring between two subse-

quent observations for every infinitesimally small period.

Solving SDEs analytically requires extensions of calculus spe-

cifically developed for models that include stochastic distributions

(Bergstrom, 1990; Mikosch, 1998). The number of models for

which analytic solutions exist, and that have been applied in the

social and behavioral sciences, is very limited (e.g., Oravecz et al.,

2009; Voelkle et al., 2012). Figure 5 with the a paths, when solving

for an infinite number of latent variables, is equal to a first-order

SDE that has been called the exact discrete model (EDM; Oud &

Jansen, 2000). The exact discrete model relates the level to the

velocity of variables, such that:

dX=dt ¼ AX þ w ð1Þ

where w is a stochastic error process defined for all possible inter-

vals of time called the Wiener process (Durrett & Durrett, 1999;

Lindsey, 2004), and A is a matrix expressing the level–velocity

relations both within and between variables. Here, X and dX/dt are

X0 X1

Y0 Y1

dY0
dt
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dX0
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Figure 5. This Figure Expands Upon the Latent Change Score Model by Introducing Latent Steps Between Observations.

Note: These additional latent steps allow the velocity to vary between observations. Stochastic perturbations are one source of velocity variance, which are

represented as the variances on dX/dt and dY/dt. As the number of latent steps becomes large, this model will numerically approximate the solution to a

stochastic differential equation. Different derivative relations, such as level–velocity (path a) and velocity–velocity (path b), could be explored. The inclusion

of path b necessitates removal of the correlation between velocities, qcov.
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represented as matrices, as each may include one or more variables.

The stochastic perturbations in w are assumed to have the following

properties: (a) the integration of w over any interval produces nor-

mally distributed stochastic errors with a mean of zero and a var-

iance related to the interval over which the integration occurs, (b)

nonoverlapping increments are independent (uncorrelated), (c)

the statistical distribution of increments is stationary (e.g., con-

stant variance), and (d) the function is continuous, that is, its

value exists at all possible times. The dX/dt latent variables in

Figure 5 possess these properties. As Figure 5 is a structural

equation model (SEM), the latent variables are normally distrib-

uted, the latent variables are not specified to correlate (indepen-

dence), the variances are constrained to be equal over time (a

condition of stationarity), and as the number of latent steps

between measurement occasions increases the model will

approximate a continuous function. Furthermore, to identify the

model, the relations within and between variables are assumed

to be constant, as is the case with matrix A. The remaining

paths, like the LCS model, are fixed to be equal to 1 or the

increment between latent variables dt, such that each subsequent

observation is equal to the prior observation plus the change

(latent variable). Figure 5 therefore represents both the SDE

model in equation (1) and the summing up (integration) of this

equation from one observation to the next.

The EDM offers an analytic, and therefore mathematically

exact, solution for the SDE in equation (1). The model depicted

in Figure 5 approximates the EDM solution by summing the

change from one moment to the next, equivalent to a Riemann

sum in calculus; as the number of latent variables becomes

large, the numerical approximation of the analytic solution

becomes reasonable (Deboeck & Boulton, 2016). Given that

equation (1) can be solved exactly, why set up a relatively

complicated SEM, such as Figure 5, rather than use an exact

solution? The limitation of the EDM is that the exploration of

model variations required re-solving for the analytic solution

using stochastic calculus unless the variation can be shown to

be expressible as a series of first-order models with the same

error structure (e.g., Oud, 2006). The numeric approximations

made by introducing latent steps as shown in Figure 5, which

have been proposed as integration of structural-differential

equations (InSDE; Deboeck & Boulton, 2016), provide a route

for comparing SDE models representing different underlying

processes. InSDE draws on researchers’ broader familiarity with

SEM as opposed to the much more specialized and less com-

monly understood calculus methods for SDE models. The

InSDE approach allows one to leverage the typical advantages

of SEM such as flexible specification of different (differential

equation) models, incorporation of different modeling compo-

nents (e.g., random intercepts from LGCMs), inclusion of mea-

surement models, and different specifications of measurement

invariance, without requiring the application of stochastic cal-

culus to solve for analytic solutions. The following section con-

siders the potential for this approach in prevention research by

comparing models of differing underlying processes with lim-

ited data, followed by a substantive example.

Testing Novel Relations With Panel Data

When considering a relatively limited number of repeated obser-

vations, researchers rarely give consideration to the dynamics of

how an individual changes from one time to the next. Models

relating derivatives are often expected to require an intensive

number of repeated observations. Many methods first estimate

derivatives from observed data and use these estimates in subse-

quent modeling (e.g., Boker et al., 2004, 2009; Deboeck, 2019);

these methods typically require more intensive measurements, as

they require a minimum of two observations to make a single

velocity estimate. In actuality, fitting differential equations does

not require intensive measurements, when one integrates the dif-

ferential equation from one time to the next rather than estimating

derivatives in a separate step. The difference with an approach

such as the EDM or InSDE is that how individuals change from

one moment to the next is mathematically specified, including

probabilistic components such as the stochastic perturbations.

Then, like any integral, one can solve for the expected change

from one specified time to another.

Consequently, competing models, representing different

underlying processes, can be compared even with relatively few

observations. One essential step in the estimation of an SEM is

the calculation of implied mean and covariance matrices given

the model and assuming the estimated parameters (Bollen,

1989). Figure 5 represents two models, one with a level–velo-

city relation (path a) and one with a velocity–velocity relation

(path b). Both models include only two observations over time,

and velocities for both variables exist only as latent variables.

As one example, the implied covariance between X1 and Y1 can

be calculated using Wright’s tracing rules as the number of

latent steps increases to numerically approximate the integration

of the SDEs. The resulting covariance is the sum of four terms

for the Path A model:

cov X1;Y1

� �
¼ 1þ dt � aYð Þint

1þ dt � aXð ÞintqXY þ dt � b � qX 1þ dt � aXð Þint
Xint�1

i¼0

1þ dt � aXð Þi 1þ dt � aYð Þint�1�i

þ q1 � b � dt2
Xint�1

i¼1

1þ dt � aXð Þi
Xi�1

j¼0

1þ dt � aYð Þj 1þ dt � aXð Þi�1�j þ qcov � dt2
Xint�1

i¼0

1þ dt � aXð Þi 1þ dt � aYð Þi

The covariance for the Path B model likewise consists of four terms:

cov X1;Y1

� �
¼ 1þ dt � aYð Þint

1þ dt � aXð ÞintqXY þ dt � b � qX 1þ dt � aXð Þint
Xint�1

i¼0

1þ dt � aXð Þi 1þ dt � aYð Þint�1�i

þ q1 � b � dt2
Xint�1

i¼1

1þ dt � aXð Þi
Xi�1

j¼0

1þ dt � aYð Þj 1þ dt � aXð Þi�1�j þ q1 � b� dt
Xint�1

i¼0

1þ dt � aXð Þi 1þ dt � aYð Þi
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The covariance between the initial observations (qXY) produces

the same covariance contribution for both models (first term of each

covariance equation), where int is the number of sums (intervals)

used to estimate the equation, which corresponds to the number of

intervening latent steps plus one, and set dt equal to 1/int if the total

time interval between observations is equal to 1. In Figure 5, with

three intervening latent variable steps, int is equal to 4, and dt is

equal to .25. The initial variance of X (qX) and the variance of the

derivatives of X (q1/dt) provide a similar contribution to the covar-

iance for both models (second and third terms of covariance equa-

tions); although in the first difference between models, in Model A,

the b corresponds to path a, while in Model B, the b corresponds to

the multiplication of the paths b and aX. The fourth contributions to

the covariance for the two models (fourth terms of equations),

however, are markedly different. For Model A, the covariance

(qcov) between derivatives provides the final contribution to the

covariance. For Model B, there is an additional contribution of the

variance of the derivative of X (q1=dt). While in the prior derivative

variance term all contributions included b � aX, this term consti-

tutes the contributions to covariance that include b but not aX.

The essential thing to take from these equations is that the effect

of the level of resources on the velocity of risk (path a) and the

effect of the velocity of resources on the velocity of risk (path b)

produce different implied covariance matrices. Estimating the para-

meters would then provide numerical matrices comparable to an

observed data matrix, and it is possible to determine which model

appears to be a better fit to the data. Even with a relatively small

number of observations, the differences in the implied covariance

matrices allow for these different relations to be disentangled.

The potential of these models for prevention research is pro-

found. Most common use of panel data is to fit growth models (e.g.,

LGCMs) that assume a single trajectory across all observations or

methods that model a limited number of changes (e.g., LCS models

or cross-lagged panel models). However, models representing

moment-to-moment changes, perturbations, and processes are also

possible (SDEs). Moreover, competing models representing differ-

ent underlying processes can be compared. This is possible only for

methods that aim to integrate (stochastic) differential equation

models from one time to the next (e.g., EDM) or approximate

integration numerically (e.g., InSDE).

Substantive Example

In this section, we demonstrate how to fit two SDEs to the same

data, explicate the differences in underlying processes that each

represents, and compare the models to determine which better

describes the observed data. We discuss the steps involved in

numerical approximation of the SDE solutions. Unfortunately, sim-

ple functions are not presently available for implementing this

approach, so implementation requires significant programming.

The online supplement includes the scripts from the example to

help jumpstart interested researchers.

Models of an intervention. The present data are from a study testing

the efficacy of a cognitive-behavioral preventive intervention for

children of parents with a history of depression (Compas et al.,

2009, 2010, 2011, 2015). Children of depressed parents are at risk

for a variety of problems (Beardslee et al., 2007) because of inher-

ited genetic factors, because living with a depressed parent can be

highly stressful, and because depression often impairs parenting.

The data for the current study are the same as Compas et al. (2015),

which examined the effect of a two-pronged intervention. One

prong involved teaching children skills to cope with stress related

to their parents’ depression. The other involved teaching better

parenting skills (warmth, structure) to parents. Previous research

has demonstrated that both have important effects on children’s

emotional outcomes and both are malleable via psychological inter-

vention (Compas, Keller, & Forehand, 2011). Participants were

randomly assigned to either the active intervention condition

(n ¼ 122) or a reading control group (n ¼ 120). For parents and

9- to 15-year-old children, the active intervention consisted of a

12-session program (8 weekly sessions and 4 monthly booster ses-

sions). Participants in the readings control group were mailed sets

of written materials to provide education about the nature of depres-

sion, the effects of parental depression on families, and signs of

depression in children. Data were collected at 6 times: baseline

(before the intervention) and 2, 6, 12, 18 and 24 months after base-

line. Out of many measures, we focused on two: Children’s reports

of secondary control coping (SCC) on the Responses to Stress

Questionnaire (Compas et al., 1997, 1999) and anxiety/depression

on the Youth Self-Report (Achenbach, 1991).

The present article focuses on the analysis of the later four

observations (6–24 months) and does not include the baseline or

2-month observation. Initial examination of the data, Figure 6,

highlights substantial changes occurring across the initial observa-

tions. It was expected that anxiety/depression would initially show

a steep reduction following the onset of treatment but that reduc-

tions would become less steep further from the initial treatment,

reflecting the diminishing effect of the intervention over time.

Examination of means across individuals and individual trajectories

suggested a rapid exponential decline in the first several months,

with a relatively stable asymptote in the later months. It can also be

anticipated that this early period is likely to have dynamics that

differ from the later dynamics. While the SDEs presented thus far

could be modified to accommodate the individual trajectories and

potential differences in the initial dynamics, the present data offer

insufficient observations (two or three) to consider modeling both

the different trajectories and allowing for the parameters in the SDE

to change as a function of time. During periods of more complex

and greater change, for modeling of changing dynamics and indi-

vidual intercepts or trajectories to occur, denser observations are

required. Consequently, the present article focuses on the later

observations, after a steadier state may have been achieved. For

the purposes of examining the effects of an intervention, this is

reasonable as one would want to demonstrate that there is a sus-

tained difference in dynamics sometime after completion of an

intervention, and not solely during a transitional period.

An LGCM with only an intercept was fit to the later observations

(6–24 months) to examine whether a model that allowed for indi-

viduals to have unique means that were constant across time (time

invariant) was a reasonable approximation of the data. Models were

fit separately for anxiety/depression (four observations, n¼ 192) and

SCC (three observations, n¼ 187) using full-information maximum

likelihood. The random intercept-only LGCMs fit the data relatively

well and seem to be a reasonable approximation of the trajectories

between 6 and 24 months (CFIANX ¼ .978, RMSEAANX ¼ .062;

CFISCC ¼ .962, RMSEASCC ¼ .079).

The random intercepts capture the steady-state, time-invariant

differences between individuals but do not describe how individu-

als vary around their individual intercepts. For these data, one could

conceptualize the observed indicators at any time to consist of two

components: (1) a time-invariant component similar to a random

34 International Journal of Behavioral Development 45(1)



0 5 10 15 20

50
55

60
65

70
75

80

Time (Months)

An
xi

et
y, 

In
te

rv
en

tio
n 

G
ro

up

●

●

● ● ●
●

0 5 10 15 20

0
5

30
35

Time (Months)

SC
C

, I
nt

er
ve

nt
io

n 
G

ro
up

10
15

20
25

●
●

●
●

●

Figure 6. Observed Participants’ Trajectories (Thin Gray Lines) for Anxiety/Depression (Left) and SCC (Right) for the Intervention Group.

Note: The connected points (circles, thicker black line) represent the means across all individuals sampled at a particular time. SCC: secondary control

coping.

Figure 7. The Models Fit to the Intervention Data.

Note: The time invariant effect consists of a random intercept for each of the two variables, SCC and anxiety/depression. The time-varying part of the model

consists of a first-order stochastic differential equation. In both models, the velocity of anxiety/depression is regressed on the level of anxiety/depression,

and the velocities have variances corresponding to stochastic perturbations. The same relation is included for SCC; the velocity of SCC is regressed on the

level of SCC, and variance of the velocities allows for stochastic perturbations. In Model A (two dark bold lines), the velocity of anxiety/depression is

regressed on the level of SCC, and the velocities are allowed to covary. In Model B (one gray bold line), the velocity of anxiety/depression is regressed on the

velocity of SCC. The variances of stochastic perturbations, and derivative regressions, are equated across the entire model. SCC: secondary control coping.
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intercept and (2) a time-varying component specified by a SDE

model as in equation (1). To separate the time-varying and time-

invariant components, an approach in the SEM literature can be

used (Hamaker et al., 2015) which, when combined with an SDE,

can produce the model depicted in Figure 7. Two variations, Mod-

els A and B, are depicted in Figure 7. Both models include effects of

level on velocity for both anxiety/depression and SCC; these would

allow for a person above or below their intercept to revert back to

their intercept.

Two models were used to test how the variations in SCC across

time are related to anxiety/depression. In Model A, the level of SCC

affects the velocity of anxiety/depression. This model posits that

one’s level, relative to an individual’s random intercept for SCC,

relates to the velocity of anxiety/depression. In Model A, the sto-

chastic perturbations of anxiety/depression and SCC (velocities)

are allowed to correlate, as there may be common events that affect

both variables. Model B posits a different underlying process where

SCC “drives” anxiety/depression, such that changes (velocity) in

SCC predict the velocity of anxiety/depression. This model posits

that it is not the levels of SCC that relate to change in anxiety/

depression, but rather that there are in-tandem changes in SCC

driving anxiety/depression.

Model implementation in SEM. Fitting the model in Figure 7 and

getting appropriate SDE estimates is the same as any other SEM,

with only one exception. To approximate the SDE numerically, the

few latent steps depicted between observation occasions in the

figure must be expanded to a large number of latent steps (e.g.,

100þ latent steps for each 6-month interval). This avoids the need

for particularly specialized knowledge in stochastic calculus,

although it imposes a programming burden. Typically, convergence

must be first achieved with a small number of latent steps, and then

the estimated solutions used as start values in models with an itera-

tively larger number of steps.3 Although time-consuming, itera-

tively increasing the latent steps allows one to confirm whether

the estimated parameters converge to a value as the time between

latent steps (dt) approaches zero. A lack of asymptotic convergence

is a useful indication that models have been incorrectly specified,

are under-identified, or lack sufficient information in the data

(empirical under-identification). The online supplement includes

plots of the estimated parameters demonstrating the convergence

of estimates toward an asymptote parameter with an increasing

number of intervening latent variables.

Results and discussion

The Akaike information criterion (AICs) and Bayesian information

criterion (BICs) for Model A (level–velocity) and Model B (velo-

city–velocity) did not show clear support for one model over the

other, with the AIC being lower for Model A (AICA ¼ 4292.5,

AICB ¼ 4297.0) and the BIC being lower for Model B (BICA ¼
594.3, BICB ¼ 591.7). Although clear support for one model over

the other is not supported by these data, examination of the esti-

mates is still informative about different processes. Table 1 presents

the estimates for the “Readings” group, the difference between the

“Readings” and “Intervention” groups, the standard error of the

difference, and the Wald-statistic p value for the difference. Both

models estimate similar parameters for the time-invariant parts of

Table 1. Estimates for Model A (Level–Velocity) and Model B (Velocity–Velocity) With Statistical Tests for Differences in the Parameters Between the

“Reading” and “Intervention” Groups.

Parameter

Model A (level–velocity) Model B (velocity–velocity)

Readings Group Diff S.E. Diff p Value Readings Group Diff S.E. Diff p Value

Random effects (time-invariant)

Mean anxiety/depression (nANX) 55.50 �2.82 0.78 .000 55.49 �2.83 0.79 .000

Mean SCC (nSCC) 7.84 �0.89 0.71 .208 7.80 �0.79 0.71 .267

Variance anxiety/depression ( TI,ANX) 33.08 �22.29 7.60 .003 33.32 �22.88 8.15 .005

Variance SCC ( TI,SCC) 20.30 �10.85 6.58 .099 20.94 �8.29 6.56 .206

Covariance anxiety, SCC ( TI,S-A) 14.96 �8.86 5.11 .083 14.93 �5.64 4.83 .243

TV initial covariance

Variance anxiety/depression ( TV,ANX) 15.39 �5.50 5.59 .326 25.30 �12.68 9.17 .166

Variance SCC ( TV,SCC) �0.09 1.89 3.95 .632 �11.50 9.09 6.26 .146

Covariance anxiety/depression, SCC ( TV,S-A) 12.54 4.59 6.54 .483 13.03 2.40 5.22 .646

Derivative relations

Anxiety/depression level–velocity (bA) �1.43 0.60 0.63 .342 �1.55 0.84 0.69 .225

SCC level–velocity (bS) �1.69 1.03 0.89 .244 �9.30 8.27 19.45 .671

SCC level to anxiety/depression velocity

(bModelA)

�0.82 1.17 0.90 .195 — — — —

SCC velocity to anxiety/depression velocity

(bModelB)

— — — — 0.90 �0.72 0.28 .010

Stochastic perturbations

Variance anxiety/depression ( qA) 78.02 �53.55 3.22 .021 45.29 �21.75 15.29 .155

Variance SCC ( qS) 39.59 �10.36 7.34 .550 182.52 �147.28 356.9 .680

Covariance anxiety/depression, SCC ( qS-A) 36.12 �31.39 5.35 .041 — — — —

Note. The “Readings” column represents the parameter estimates for the Readings group, the baseline in this intervention. The “Group Diff” and “S.E. Diff” are the
estimates of how the Intervention group parameter differed from the Readings group and the standard error of this difference. The “p value” column represents the
Wald statistic estimate of the p value assessing whether the difference estimates significantly differ from zero. TV refers to the time-varying part of the model. The
models were run such that one unit of time is equivalent to 6 months, which affects the interpretation of parameter values such as those for the Derivative Relations.
SSC ¼ secondary control coping.
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the models, the random intercept means (nANX, nSCC), variances

( TI,ANX,  TI,SCC), and their covariance ( TI,S-A). In both models,

the random effect of anxiety/depression has a statistically lower

mean and less variance for the Intervention group compared to the

Readings group, as would be typically expected for a successful

intervention.

In the time-varying part of the model, some differences sug-

gest that the intervention may have affected more than the mean

and variance of the random effects. In Model A, the variance of

the stochastic perturbations for anxiety/depression ( qA) is sig-

nificantly lower in the Intervention group (p ¼ .021). This may

suggest that participants become better (i.e., more valid) evalua-

tors of their own anxiety/depression as a result of the interven-

tion, such that there is less noise around the trajectories of

people who received the intervention. The dynamics within and

between variables, however, are not significantly different for

the two groups. No evidence is provided that the intervention

has changed the regulation of anxiety/depression (anxiety/

depression level–velocity, bA, p ¼ .342) or SCC (SCC level–

velocity, bS, p ¼ .244) across time, nor the effect of the level of

SCC on the changes in anxiety/depression (SCC level to anxi-

ety/depression velocity, bModelA, p ¼ .195).

Model B offers a different perspective on the data, and

another possible way in which the children were affected by

the intervention. Model B does not provide evidence for a dif-

ference in the stochastic perturbations to anxiety/depression for

the two groups ( qA, p ¼ .155). As with Model A, Model B

provides no evidence that the intervention has changed the reg-

ulation of anxiety/depression (anxiety/depression level–velocity,

bA, p ¼ .225) or SCC (level–velocity, bS, p ¼ .671) across time.

Model B does, however, suggest that the way in which the

velocity (changes) of SCC affects the velocity of anxiety/depres-

sion is positive for the Reading group (bModelB, b ¼ .90) and

significantly closer to zero for the Intervention group (bModelB

difference ¼ –0.72, p ¼ .010). The positive value for the Read-

ing group suggests that time-varying changes in SCC are posi-

tively related to changes in anxiety/depression, but for the

Intervention group, the relation might be much closer to zero

(i.e., .90–.72 ¼ .18). Alternatively, Model A (where the velocity

of SCC and anxiety/depression are correlated) suggests not that

one variable affects the other but that events may affect time-

varying changes to both anxiety/depression and SCC. This cov-

ariance is smaller for the Intervention group in Model A, with

the Reading group having a correlation of .65 and the Interven-

tion group a correlation of .18.

Let us emphasize that the purpose of this analysis was not to

draw strong conclusions about the intervention. Rather, we pres-

ent this example to highlight how models with time-varying

changes and time-invariant components can be fit to intervention

panel data. This example also demonstrates the fitting of an SDE

to the time-varying component of the model. In fitting this SDE,

we fit models exploring different underlying dynamic processes

by changing the level–velocity and velocity–velocity relations.

The results suggest a change in mean structure that would be

expected for a successful intervention. In addition, however, the

time-varying parameters allowed for examination of differences

in the regulation of variables (level–velocity within variables),

stochastic perturbations around one’s mean, and coupled relations

between variables. These parameters may give insight into

whether and how the intervention has changed the system

dynamics within and between variables.

Conclusions

Many interventions involve collecting repeated observations on the

same individuals (e.g., baseline, mid-intervention, two to three

post-intervention observations), which offers the opportunity to

consider differences in how individuals vary over time. This article

presents the possibility of modeling both time-varying and time-

invariant effects using SEM and SDEs. The introduction of SDEs

allowed for framing nonlinear processes as relations between deri-

vatives. In the substantive example, this procedure allowed for the

exploration of two different processes in the time-varying part of

the model. Although these processes included regulation within

variables, ongoing stochastic perturbations, and different relations

between variables, the models were successfully fit to a relatively

limited number of repeated observations. Differences in the

dynamics of the Reading and Intervention groups became apparent,

suggesting that effective interventions may not be limited to

changes in means but may also result in changes to how variables

affect each other over time.

SDEs offer the opportunity to specify a variety of processes for

how individuals change from one time to the next. This offers

intervention researchers multiple research opportunities. The vari-

ety of differential equations that can be explored, including differ-

ent relations between derivatives and inclusion of stochastic

elements, allows for the exploration of the dynamics within and

between variables. These models also offer the opportunity to

assess whether an intervention has changed the dynamics of a sys-

tem, in addition to producing mean differences. Changes to the

dynamics of an underlying system may be instrumental to under-

standing why certain interventions are effective and why the effects

of some interventions are more transient. Moreover, certain

changes to system dynamics may be important for producing inter-

ventions with more sustained effects. Interventions targeting differ-

ential self-regulation in anxiety/depression, versus those reducing

the variance of perturbations to anxiety/depression, versus those

that change the coupling to other variables may be differentially

effective. If the key to successful interventions lies in changing

dynamics, rather than just producing mean differences, these meth-

ods offer a window to understanding how interventions affect the

dynamics within and between variables.
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Notes

1. Note that loadings for the latent levels and velocities in this

model are the same as required for representing latent intercepts

and slopes, and the models differ only in their interpretation. To

represent acceleration, a third latent variable could be included

using standard quadratic loadings (time2) multiplied by one-half

(i.e., ½ time2).

Deboeck et al. 37

https://orcid.org/0000-0001-5052-7837
https://orcid.org/0000-0001-5052-7837
https://orcid.org/0000-0001-5052-7837


2. As with other structural equation models, a measurement model

could be added to this model to allow for the inclusion of mea-

surement errors at each observation.

3. For the data analyses presented, a model script was written for

each of the two models that automatically changes the number of

latent variables based on a variable “steps.” The number of

latent steps for each of the models began with 0 steps and was

incremented through 3, 5, 10, 20, 50, 100, and 150 steps.
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