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Derivation of the ML discrepancy function from likelihoods'
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Vanderbilt University

This document grew out of an answer to a student question in my Factor Analysis course. |
thought it would be a handy reference for others. The question was: "How do you get from
the likelihood formula to a discrepancy function?" | could not find the details of the
calculations in any reference, so derivations are provided here.

There are different answers to the question, depending on whether we want to include
structured means in the model and on what sort of likelihood we use. CEFA (Browne,
Cudeck, Tateneni, & Mels, 2008) uses a discrepancy function based on the Wishart

distribution—sort of like a multivariate y* distribution describing sampling properties of

covariance matrices. This kind of likelihood is called maximum Wishart likelihood (MWL).
Other situations call for using a likelihood based on the joint multivariate normal distribution
(MVN). For example, FIML estimation in SEM (e.qg., in Mplus; Muthén, 2004) uses the MVN
likelihood formulation because it is based on casewise sample data rather than on sample
covariance matrices, which require complete (or imputed) data. | will address MVN likelihood
first, both without and with a mean structure.

Throughout, we make use of the fact that the maximum likelihood estimate of X is

W=N"> (x,-X)(x, —~X) , which involves dividing by N rather than the more familiar N 1.

The covariance matrix W is used in MVN discrepancy functions despite being a little biased
because it has smaller mean squared error. The traditional sample covariance matrix, on the

other hand, involves dividing by N—1: S=(N-1)" > (x, -X)(x, ~X) . The covariance matrix
S is used in MWL discrepancy functions.

Discrepancy based on the multivariate normal distribution

First, define two likelihoods, one for the proposed model (Model M) and one for a more
general comparison model. The comparison model here will be the saturated model (Model

0), one that completely accounts for the observed data (i.e., yields perfect fit).

The multivariate normal joint likelihood function for the proposed model is:

| =

X 1 /-
| 0| P exp[—z(xi ~ 1) z, (x, _”o):l
(27)2

N
L,= H
i=1

' My thanks to Guangjian Zhang and Patrick O'Keefe for providing careful readings and catching some errors.



2/18/16

The MVN joint likelihood function for the saturated model is:

0=

1=

’

' (x, —ul)}

1
(21|),, exp[—z(xi _"1)
)2

L=l

Define the likelihood ratio as:

LR is always between 0 and 1, so —2In LR will always be positive.
Define the discrepancy function F, (W,X ) using:

NxFy (W,X)=-2InLR

N X Fy (W,L,) = —21n%

NxF, (W,Z,)=-2InL, +2InL,

We need to know what the quantities —2In L, and —21n L, equal. Comments in blue indicate
brief explanations of non-obvious algebraic operations. First, for the proposed model...

N Z 1 ’r
2InL, =-2In H|( 0|)F exP[_E(Xi_”()) Zol(xi—uo)}
= (2r)2
1
SINAE

(
1
N Yy ’
—2InL, :_Zz ln{| 0| j, +ln{exp[—%(xi ~ 1) Zgl(xi_uo):|}

N 1 i 1 -
_2lnLo :_2Z{m |Zo| 2}_ln{(2ﬂ-)2}_5(xi _uo) EOl(Xi _uo)}
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Yolo1 p 1 7 e
—2InL, = _ZZ{_EIH|EO| __ln(Z”)_E(Xi _”0) Z01 (Xi _”0)}
i=1

—21nL0=iln|Zo|+ipln(2ﬂ' +i — 1)
i=1 i=l1 i=1

N ’
—2InL, = NIn|E |+ NpIn(27) + D (x, —p,) Zo' (%, — 1)

i=1

N
—2InL, = Nln|Z |+ Npln(27)+ Z { -n, )} b/c scalar = tr(scalar)
N
—2InL, = NIn|E|+ NpIn(27) + Z { — 1) (X, — 1) zgl} identity
N ’
—2InL, = Nln|Z |+Npln (27)+ Z { x —uo X, — 1) ):gl} adding Ns strategically
=1
N ’ tant X7
2InL, = NIn|Z,|+ NpIn(27) + Nir Z X, — ) (x, =) b o o
i1 tr(sum) = sum(tr)

—2InL,=N ln|2 | + Npln(27) + Ntr( ‘IW) definition of a covariance matrix

In the last step, we implicitly assumed that the mean structure is uninteresting to us, and

thus that p, =X, allowing us to turn —Z — 1) (X, — )’ (which includes parameters) into
i=1

a sample covariance matrix W involving no parameters.

Next, for the saturated model...

X 1
—2InL; = —2In H—CXP[—E(Xi - z (x; - ul):|
(repeat a few steps from the previous derivation)

N ’
—2InL = NIn|Z |+ Npln(27)+ Ntr{ZII%Z(xi —n)(x,—n,) }

i=1

—2InL, =N 1n|)21| +Npln(27) + Ntr(EI‘IW) definition of a covariance matrix
—2In L, = N'In|W|+ NpIn(27) + Ner(W'W) note: W = X for the saturated model

Again, we assumed that p, =X. This will be true for the saturated model regardless of
whether or not we are concerned with the mean structure.
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Now we are in a position to compute F,; (W,X,):

NxF,, (W,Z,)=—-2InLR
NxFML(W,EO)z—Zln%

NXF, (W,E,)=-2InL,+2InL,
Nx Fy (W,Z)) = NIn|Z|+ NpIn(27)+ Ner(Z,'W) - NIn|W| - NpIn (27) - Ntr (W™'W)

Divide through by N.

Fy (W.Z,) = In|Z,| + PIBRZ) +1r(E,'W)—In|W| - pI2Z) —1r(W'W
Fo (W,E0) =In|Z |- In|W|+1r(Z,'W) - tr (W'W)

FML(W,ZO):1n|)20|—1n|W|+tr X'W-W" 1W) combine traces
Fy (W, Z)) =In|Z| - In|W|+2r| Z)' (W - 20 ]dlstrlbutwe law

(=
(=
Fo (W,E0) =In|Z |- In|W|+r (Z,'W = £,'Z, ) replace W'W with I=X'E,
Fy (W.E,) =In|Z |~ In|W|+1r[ (W—-X,)Z;' | blc tr(AB) =tr(BA)

An equivalent expression that is commonly seen is:

Fy (W, Z)) =In|Z |- In|W]|+r(Z;
Fy (W, Z)) =In|Z |- In|W]|+r(X;
Fo (W, Z)) =In|E |- In|W]|+1r( X, 1W)

Fo (W, Z) =In|E | - In|W|+1r(Z,'W) - p

If we elect to include a mean structure in the model, we cannot pretend that p, =X, so:

N
—2InL, = NpIn(27) + N1n|Z| + D (X, po) (%, —py)

i=1

N ’
—2InL, = NpIn(27)+ N1n|Z,|+ NN‘IZtr{(xi —n,) ' (x, — uo)}

N ’
—2InL, = NpIn(27) + N1n|Z,|+ Ntr{EglN_IZ(Xi -1)(x, — 1) }
i=1

N ’
—2InL, = NpIn(27)+ NIn|Z |+ Ntr{EglN_IZ(xi —X+X—p,)(x, - X+X—p,) }

i=1
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N

~2InL, =Np ln(27z')+N1n|Zo|+Ntr{ZolNIZ((XI. ~X) +(i—uo))((xi —x%) +(X—p, ))}

i=1

’ N ’
—2InL, = Np ln(27z')+N1n|Zo|+Ntr{ZolNIZ(xi -X)(x, —X) }+Ntr{201N12(xi -X)(X-n,) }
i=1

i=1

+Ntr{ZO‘N‘i(i— 1 )(x, —i)'}+ Ntr{ZolN‘i(i— ) (X—n, )'}

i=1 i=1

—2InL, = NpIn(27)+ N In|Z |+ Ner{Z,'W} + Ntr{ZglN_IM}
Nr{zNM} {2 (5 ) (5 |

~2InL,=Np 1n(27:)+N1n|20|+Nzr{zglw}+Ntr{zglN-lN(i—po)(i—po )'}
~2InL, = Npln(zz)+N1n|20|+Nzr{zglw}+Ntr{(i—po )z, (i—po)}
~2In L, = NpIn (27) + N In[)|+ Ner {Z;'W}+ N (X—p, ) Z;' (X—p, )

As for the saturated model,

N ’
—2InL, = NpIn(27) + NIn|W|+ ) (x, -X) W (x,-X)

i=1

N ’
—2InL, = NpIn(27) + NIn|W|+ NN (x, -X) W'(x, —X)

i=1
—2InL, = NpIn(27) + N In|W|+ Ntr(W"'W)
—2InL = NpIn(27)+ N1n|W|+ Np

From these it can be seen that the discrepancy function including mean structures will have
an additional term from the proposed model's likelihood:

Fy (W, Z)) =In|E|~In|W|+ o {Z)'W} - p+(X—p,) Z;' (X1,

Conveniently, NXF,, ~ 7, -
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Discrepancy based on the Wishart distribution

One expression of the Wishart likelihood (instead involving the unbiased estimate of X, the
sample covariance matrix S) is:?

S |):.0|_g exp(—gtr{E;S}J

C|s

where n=N —1 and C is a constant that does not depend on the model parameters. Algebra
similar to that above will yield a discrepancy function identical to the one derived using the
MVN likelihood. First, the likelihood for the proposed model is:

ool i)

—2InL, =-2In(C)—(n— p—1)In|S|+ nln|E |+ ntr{Z,'S}

—2In L, =—21n(C|S

—2InL, =-2In(C)—(n— p—1)In|S|+ nln|E |+ ntr{Z,'S}
The likelihood for the saturated model is:
e |S|_g exp(—%tr{S”S}D

—2InL, =-2In(C)—(n— p—1)In|S|+nln|S|+np
—2InL, ==2In(C)+(p+1)In|S|+np

—-2InL, :—2ln(C|S

Finally,

(N -1)xF,, (S,Z,) =—2InLR

(N—=1)xFy (S,Z,)=-2InL, +2InL,

(N =1)X F (S,Z) = 28T —(n— p—1)InS|+nIn|Z |+ nrr{E;'S} + 2kC] —(p+1)In|S| - np
(N =1)xFy (S.Z)) = nln|Ey| - nln|S|+ ntr{ 'S} - np

Fy (S, 2Z,) =In|X,| - In[S|+ r{Z;'S} -

Note that if the Wishart likelihood is used as a basis for deriving F,, , then (N —1)xF, ~ x5 -

2 This expression differs slightly from one given in many multivariate texts, C* | A|'/2("_1’_1) |EO|_"/2 exp(-Yatr{Z;'A}), where A

is a cross-product matrix equal to nS and C* = Cn "7
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